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Abstract 

 

Off-the-shelf Balance of Plant (BOP) materials for proton exchange membrane 

fuel cell (PEMFC) systems may be more economical than custom-prepared materials. 

However, they pose a higher risk of decreased performance of a PEMFC by 

contaminating the electrodes.  This dissertation contributes to the understanding of the 

mechanisms of electrode contamination by studying the effect of leachate extracts and 

model compounds from structural plastics and assembly aids that may be used as BOP 

materials. The effect of contamination was investigated by measuring the decrease in 

electrochemical surface area (ECA) of the Pt/C catalyst and the change in the oxygen 

reduction reaction (ORR) current using a thin film rotating disk electrode (TF-RDE) 

method. Experimental protocols were developed using several batches of electrodes with 

mass and specific activities within a narrow range of 250±10 mA/mgpt and 350±15 

µA/cm2Pt respectively to ensure reproducibility and quality of contamination data. 

Preliminary data for screening of BOP materials showed the effect of the liquid phase 

contamination can be correlated with the chemistry of the constituents present in the 

leachates. 

The organic constituents found in the leachates (detected by GCMS) were tested 

as model compounds with varying concentrations. The results from these individual 

organic compounds indicated different extent of contamination (on ECA and ORR) 
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effects attributed to the poisoning of the catalyst or ionomer mirrored in the loss of Pt 

sites in the catalyst or the ORR currents. ECA losses due to the organic compounds were 

more than 50% in all cases at 20 mM. The experiments also offered insights on the 

poisoning mechanism (adsorption, absorption, parallel electrochemical reactions) by the 

contaminant molecules. Additional analyses were performed to measure and compare the 

peroxide formation during ORR experiments due to the contamination using a rotating 

ring disk electrode (RRDE) method. Recovery experiments were performed to assess the 

ability to restore the lost ECA and currents through potential cycling to higher voltages. 

Conclusions were drawn based on the severity of contamination (aromatics more than 

aliphatics) and recoverability of the electrodes. 

Since the leachates were mixtures of organic and inorganic compounds, additional 

experiments were performed to demonstrate the effects of (1) mixture of organic 

compounds and (2) mixture of organic and anionic constituents identified in the leachates 

using TF-RDE method on Pt catalyst and ionomer. The effects of the mixtures on 

electrode were compared to the individual constituents’ effects. Data showed large and 

almost irreversible losses for a mixture of aromatic model compounds. In cases of 

mixtures of aliphatic and aromatic organic compound the contamination pattern 

resembled that of aromatic compounds. The anionic species demonstrated additional 

ECA loss compared to any other species, which could not be attributed to ionomer 

poisoning by absorption. It can be concluded that the aromatic compounds shows higher 

contamination features than aliphatics for both the ionomer and catalyst parts of the 

electrode. 
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Chapter 1. Introduction 

1.1. Polymer Electrolyte Membrane Fuel Cell (PEMFC) 

There is a growing awareness on Fuel Cell research due to the less environmental 

impact and decay in the reserve of fossil fuel as a supply of energy sources. Fuel cells 

have the potential to provide a clean and efficient energy source for transportation, 

stationary power, and specialty applications as sustainable and renewable energy sources. 

Recently efforts are being made to commercialize the PEM fuel cell running on hydrogen 

to minimize dependence on petroleum. Unlike batteries, fuel cells do not store energy. 

They can be continually fed a fuel much like an engine. One common fuel often used for 

fuel cells is hydrogen because it is abundant in nature and has highest energy density. 

The first challenge is producing inexpensive fuel cell components. Fuel cells can 

be commercially used in stationary and automotive industries if the cost is prohibitively 

high. Current studies estimate that the cost of large scale production of fuel cells would 

be approximately 31 $/kW. The US Department of Energy (DOE) has targeted a 

production cost of $30/kW for transportation and $750/kW with for Stationary 40,000 h 

durability and efficiency of 42.5% by 2015 (1, 2) to make fuel cells commercially viable 

in the transportation market. As shown in Figure 1.1, for projected for high volume 

production (500,000 units/year) the cost of a hydrogen-fueled 80-kWe fuel cell power 

system) was calculated to be $51/kW in 2010, a $22/kW (30%) reduction from the 2008 

cost of $73/kW and $10/kW (16%) reduction from the 2009 cost of $61/kW (2). But the 
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future targets (DOE, 2015) for vehicle applications still being $30/kWnet with the 2015 

durability target of 5,000 hours (2), major system level cost lowering is required. 

Currently the largest cost associated with the fuel cell is the precious metal Pt 

used as the catalyst for the oxygen reduction reaction (ORR) at the cathode. This cost can 

be decreased by finding robust electrode configurations and low concentration Pt catalyst 

or replacing Pt with other metal catalyst that are cheaper. New catalysts that use non 

precious metals are in development, but it compromises with the efficiency (3). The other 

major cost associated with hydrogen PEMFCs is the cost of creating and distributing 

hydrogen fuel. 

1.1.1. History of Fuel Cell 

Sir William Grove invented the first fuel cell generating electricity from gaseous 

fuel and called it “gaseous voltaic battery”. The first practical application of polymer 

membrane fuel cell dates back to the end of 1960 used in the Gemini Program (US Space 

Program) manufactured by General Motors. Fuel cells were used in the Apollo Space 

Program. Fuel cell resurfaced in 1990’s when Ballard Power Systems introduced fuel cell 

powered buses (4). It was until later 1990’s that the potential of fuel cell in automobile 

application was realized. The fuel cell activity was funded by US Department of Energy 

at the end of the 1990’s and most car manufacturing companies played an important part 

in production of a prototype car that ran on hydrogen energy. In 21st century, the scope 

of manufacturing and commercializing fuel cell vehicles, applying fuel cell in stationary 

and emergency power supply is mostly limited in North America, Japan and some of the 

western European countries. Even though gradual involvement of other countries have 
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been seen in last five years, for different environmental and economic reasons, more 

continuous interest and effort are needed in research of all kind of fuel cells. 

Development of PEM fuel cell catalysts with superior activities has always been 

an important part in the history of commercialization of fuel cell. Effort to reduce 

precious metal (Pt) usage in manufacturing a PEMFC has opened new directions in 

catalyst synthesis, such as using high surface area carbon support for Pt and alloying Pt 

with non-noble metals like Ni, Co, Fe etc. The Pt catalyst used in a PEM fuel cell has 

evolved from platinum black to carbon supported platinum catalysts. Platinum black 

catalysts are not economically feasible due to their low surface areas, requiring higher 

platinum loadings to achieve realistic performance goals. In last decade, researchers have 

been focusing on carbon-supported platinum (Pt/C) catalysts to attain higher active 

surface areas. Pt/C catalysts are now available in loadings from around 20% to over 50% 

platinum. Enhancements in catalyst synthesis technology have allowed for production of 

catalysts containing over 50% platinum with very small platinum particles. For example, 

catalysts with 50% platinum by weight can be made with an average platinum particle 

size of ca. 2 to 3 nm. Typical loadings in the electrode today are about 0.4-0.8 mg 

platinum/cm2, which is significantly lower than 25 mg/cm2 with early platinum black 

catalysts. The US Department of Energy (DOE) has set targets of 0.3 mg/cm2 for 2010 

and 0.2 mg/cm2 for 2015 (5). 

1.1.2. Hydrogen as fuel 

Hydrogen has been touted as the “fuel of the future”. Hydrogen can be created 

from a variety of sources independent of oil including reforming of natural gas or coal, 

biomass, or electrolysis of water. Hydrogen is a carbon-free fuel. Therefore no harmful 
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emissions are released during hydrogen consumption, which is a big concern for global 

warming. Water is the only byproduct of a hydrogen/oxygen fuel cell. In addition, the 

efficiency of fuel cells is higher than of internal combustion engines since the process of 

the fuel cell is electrochemical and therefore does not involve conversion of thermal to 

mechanical energy. For these reasons extensive research funding has been given to study, 

develop, and produce hydrogen PEMFCs. 

Hydrogen fuel cells utilize the energy released when hydrogen and oxygen 

combine to form water. This reaction occurs as two separate half reactions (6): 

2H2 → 4H+ + 4e− (anode) 

O2 + 4e− + 4H+ → 2H2O (cathode) 

Energy is manifested as electrical potential by forcing the hydrogen half reaction 

products at the anode through an electrolyte that allows protons (H+ ions) to pass through 

to the cathode but restricts the flow of electrons. The electrons are flows in an external 

path and the electrical current is obtained. The transported protons and electrons meet at 

the cathode where they react with oxygen to form water. These reactions are shown 

schematically in Figure 1.2. 

Hydrogen gas is an extremely difficult to store, and transport. Currently no 

specific infrastructure exists for the large scale production or transportation of hydrogen 

fuel. Hydrogen requires special infrastructure because it has a low energy to weight 

density and because it causes corrosion of normal transportation pipes made of steel and 

other metals. Additionally, no distribution network for hydrogen currently exists. 

Estimates put the cost of a transport and distribution network for hydrogen in the US at 
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up to 1 trillion dollars. At the very least 12 billion dollars of investment is needed to 

provide filling stations accessible by 70% of the US population (7). 

Recently a hydrogen fueling station (operated by AirPower) opened next to the 

Orange County waste-water treatment plant in Fountain Valley. The hydrogen fuel offers 

about 70 miles per gallon and the station can fuel up to 50 automobiles per day with the 

daily 120 kilograms of hydrogen gas produced at the plant. In order to produce the 

hydrogen gas, sewage is processed to collect methane. This methane is converted into 

hydrogen and sent into a fuel cell to power the entire plant with 250 kilowatts of 

electricity. The remaining hydrogen is converted into fuel grade hydrogen and sent to the 

fueling station for consumer use. 

1.1.3. Fuel cell components 

The membrane electrode assembly (MEA), consisting primarily of an anode 

catalyst, a cathode catalyst, and a proton exchange membrane (PEM), is the key 

component of PEM fuel cells (see figure 1.3). The electrocatalytic activity, selectivity, 

and stability of catalysts, as well as the electrochemical reactions taking place at the 

catalyst–PEM interface, play a crucial role in determining the performance and durability 

of fuel cells. At cathode, oxygen reduction is catalyzed by Pt. The other electrode, the 

anode, is where hydrogen oxidation occurs. Electrodes for fuel cells are usually made of 

platinum or other precious metal combinations. These electrodes are separated by an 

electrolyte. PEMFCs are fuel cells that use a solid polymer membrane as the electrolyte. 

These polymer electrolytes are known as ionomers. The most popular and well-studied 

polymer electrolyte membrane is Nafion® (Dupont. Wilmington, DE). Nafion® has a 
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polytetrafluoroethylene (PTFE) like backbone with sulfonic acid terminated ends (9). 

Polymers of this type are often called perfluorosulfonic acid (PFSA) polymers. 

The strong bonds between the fluorine and the carbon make it durable and 

resistant to chemical attack. Another important property is that it is strongly hydrophobic, 

and so it is used in fuel cell electrodes to drive the product water out of the electrode, and 

thus it prevents flooding. The basic PTFE polymer is sulphonated – a side chain is added, 

ending with sulphonic acid HSO3. The HSO3 group added is ionically bonded, and so the 

end of the side chain is actually SO3- ion that attracts H+. The key property of sulphonic 

acid is that it is highly hydrophilic. The hydrophilic regions around the clusters of 

sulphonated side chain can lead to the absorption of large quantity of water, and increase 

the dry weight as much as 50%. Within the hydrated regions, the H+ ions are relatively 

weakly attracted to the SO3
- group and are able to move (10). 

Necessary components in fuel cell are carbon-supported platinum layer and gas 

diffusion layer in the fuel cell system. Gas diffusion layers (GDL) regulate the supply of 

gas to the electrodes as well as help with the transport and management of the water in 

the fuel cell system. They must also be electrically conductive to pass the current from 

the electrodes to the current collectors. GDLs are generally made of carbon cloth or 

carbon paper and often contain PTFE to aid in water management and channeling. 

There are different coating processes for the generation of catalyst layers (CL) in 

MEAs. The traditional mode is that the CL is applied to the GDL (catalyst gas diffusion 

layer, CGDL), followed by membrane addition. The other mode is that the CL is directly 

applied to the membrane (catalyst coated membrane, CCM) followed by GDL. Adding 
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the GDLs to the CCM creates a membrane electrode assembly (MEA). Multiple MEA 

units can be stacked together in series to provide a larger electrical potential than one 

MEA alone just as multiple batteries can be placed end to end to create a larger voltage. 

MEAs are separated by bi-polar plates which collect the current and direct gas flows in 

the fuel cell stack. Other system components such as gaskets, tubing, and wiring are also 

needed (6). 

The important challenges in PEMFC research arise in the CLs because these are 

complex and heterogeneous. The catalyst layers need to be designed so as to generate 

high rates of the desired reactions and minimize the amount of catalyst necessary for 

reaching the required levels of power output. To meet the goal, the following 

requirements need to be considered: 

(1) Large three-phase interface in the catalyst layer, 

(2) Efficient transport of protons, 

(3) Easy transport of reactant and product gases and removal of condensed water, and 

(4) Continuous electronic current passage between the reaction sites and the current 

collector. The CL is in direct contact with the membrane and the gas diffusion layer 

(GDL) 

1.2. PEM fuel cell fundamentals and theories 

The performance of a fuel cell is governed by its Polarization Curve. This type of 

performance curve shows the DC voltage delivered at the cell terminals as a function of 

the current density (current per unit area of membrane) is drawn by the external load. In 
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reality fuel cells achieve their highest output voltage at open circuit (no load) conditions 

and the voltage drops off with increasing the voltage drops off with increasing current 

draw. This is known as polarization. An example of a polarization curve is shown in 

figure 1.4. 

The fuel cell efficiently converts chemical energy to electrical energy, but the 

conversion is associated with some losses. There are losses to energy production 

associated with each of the main processes involved in the energy conversion. The losses 

that reduce the efficiency of fuel cells can be broken down into four main categories. 

These categories are open circuit losses, activation losses, Ohmic losses, and mass 

transport losses. These losses will often be referred to as overpotentials or polarizations. 

In a real process the electrodes cannot operate at their equilibrium potentials. 

Irreversibilities in real processes lead to efficiency losses or resistances to the process. 

Electrodes must shift to potentials more favorable for oxidation or reduction to overcome 

efficiency losses. These shifted potentials are called overpotentials. 

The cell voltage V = Open circuit voltage – cathode activation losses – anode 

activation losses – ohmic losses – (concentration polarization or mass transport losses) 

(11). 

Open circuit losses cause the potential of the cell at zero current to be lower than 

what one might expect from the theoretical thermodynamic potential of the cell. The cell 

potential is lower than the thermodynamic potential mainly due to use of air instead of 

pure oxygen, reactants crossing over from one electrode to the other and oxide formation 

on the electrodes (12). Activation losses are associated with the reaction and charge 

transfer steps. Ohmic losses account for the energy lost as ions are carried across the 
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electrolyte. Mass transport losses occur because the reactant concentrations are lowered 

as reactants are transported to the reaction site (13). 

• Activation losses: Slow kinetics of reaction on electrode surface. The activation 

overpotential arises by virtue of the activation energy barrier that the reactants must 

overcome. Since cathode kinetics are slower than anode kinetics, cathode has large 

overpotential and anode has much smaller overpotential, so small that it is ignored for 

all practical purposes. 

At equilibrium: Forward rxn. rate = Reverse rxn. Rate, so no net current is 

flowing. 

• Fuel crossover and internal currents: Diffusion of fuels from anode to cathode 

through the electrolyte and react with oxygen without generating current and electron 

passes through the electrolyte. This small amount of wasted fuel that migrate through 

the electrolyte is known as fuel crossover. 

• Ohmic losses: Electric resistance of electrode and interconnections. Ohmic losses 

(equation 1) occur due to resistances to the flow of ions through the electrolyte and to 

the flow of electrons from the electrode to the external circuit. 

ηohmic = ηelec + ηionic = i(Relec + Rionic)                                        [1] 

Rionic = Electrolyte resistance to ionic transport 

Relec = Electrical resistance in cell 

• Mass transport or concentration losses: Change of reactant concentration at surface of 

electrode. Concentration gradient establishes at the electrode surface which prevent 

the fresh reactants from reaching the catalyst and reduction in reaction concentration. 
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The change of O2 concentration if air is used and O2 partial pressure in the cathode 

will reduce the operational voltage significantly. Since H2 diffusion is fast across the 

flow field and purity of the gas is higher than air used in cathode, concentration 

polarization in anode is negligible. At cathode slow oxygen mass transport loss and 

subsequent voltage loss in the cathode, this is also called mass transport losses (11). 

These losses are also dependent on the amount of current drawn from the cell. 

One typical way of measuring fuel cell performance is to graph the voltage of the fuel 

cell on the ordinate axis against the current density of the cell on the abscissa. These 

graphs are called polarization curves. A polarization curve has three main regions named 

after the overpotentials that dominate in that region. At low currents activation dominates 

the polarization curve. In middle potentials Ohmic losses dominate the polarization. At 

high currents mass transport effects come into play. These losses determine the total 

amount of power that can be drawn from a fuel cell. The power drawn from the cell is 

equal to the voltage multiplied by the current. Figure 1.4 shows a representative fuel cell 

polarization curve and highlights these three regions (11). 

1.2.1. Fuel cell thermodynamics 

The basic reactions occurring in the half cells are: 

H2 → 2H + + 2e− (anode) 

O2 + 4e− + 4H+ → 2H2O (cathode) 

The reaction can be combined and written as: 

H2 + 1/2O2 → H2O (l) + 286 kJmol-1 
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The reaction is exothermic, with 286 kJmol-1 heat of reaction released per 

molecule of hydrogen. This heat can be partially converted to electricity in a fuel cell 

following the Gibb’s free energy (∆G) equation (2): 

∆G = ∆H – T∆S                                                           [2] 

Due to the entropy (∆S), some energy is lost as heat. At T= 25°C, out of 286 

kJmol-1, 237 kJmol-1 can be converted to electrical energy. 

Electrical work, W, in a fuel cell is given by: 

W = nFE                                                               [3] 

n = number of electron transfer per molecule of H2, 2 

F = charge for 1 mol electron transfer (Faraday’s constant), 96485 

E = theoretical potential of a fuel cell 

Now, maximum number of electrical energy generated in a fuel cell is the Gibb’s 

free energy, ∆G. 

Therefore, W = ∆G, or 

E 	 ‐∆G
nF

                                                                   [4] 

The numerical value of E after substituting for ∆G, n and F is 1.23 Volts. So, at 

25°C the theoretical potential of a fuel cell is 1.23 V. 

The theoretical fuel cell efficiency is given by η: 

	 ∆
∆

 = 0.83 or 83%                                               [5] 

This efficiency changes with temperature and pressure. 
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E° = -G°/ (z F)………………………………..[6] 

The general Nernst equation correlates the Gibb's Free Energy G and the EMF 

of a chemical system known as the galvanic cell. For the reaction 

aA + bB ↔ cC + dD 

and, ba

dc

BA

DC
Q

][][

][][
  

It has been shown in thermodynamics that 

G = G° + R T ln Q                                               [7] 

G = - z FE                                                          [8] 

- z F E = - z F E° + R T ln Q                                         [9] 

Where R, T, Q and F are the gas constants (8.314 J/(molK), temperature (in K), 

reaction quotient, and Faraday constant (96487 C), respectively). Thus, we have: 

ba

dc

BA

DC

zF

RT
EE

][][

][][
ln0                                          [10]

 

	                                                    [11] 

Where E0 is the cell potential at standard condition or formal potential (potential 

actually measured in an electrochemical cell) (14) 

This is called Nernst Equation (equation 11). Nernst equation describes how 

reversible cell voltages vary with chemical activity. A Carnot engine would have to have 

a high temperature of 1753 K, with a corresponding low temperature of 1753 K, with a 

corresponding low temperature of 298 K, to achieve an efficiency of 83%. 
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1.2.2. Fuel cell electrochemistry 

In a fuel cell in cathode oxygen reduction and in anode hydrogen oxidation takes 

place. The net current density generated due to these electrochemical reactions and the 

potential of the fuel cell bears a relationship knows as Butler Volmer equation (4): 

                          [12] 

Where: 

 = exchange current density kinetic parameter representing the electrochemical 

reaction rate at equilibrium. For an electrochemical reaction, both forward 

and backward reactions can occur. At equilibrium, the net current density of 

the reaction is zero. The current density of the forward reaction equals that of 

the backward reaction [3]. This current density is called exchange current 

density. The magnitude of the exchange current density determines how 

rapidly the electrochemical reaction can occur. 

, 	 = transfer coefficients for reduction and oxidation reactions, is 0.5 for 

hydrogen fuel cell anode and 0.1 for anode α = 0.5 

Er = reversible or equilibrium potential. The reversible potential at the PEMFC 

anode is 0 V and 1.23 at the cathode. F is the Faraday constant, R is the gas 

constant, and T is the temperature in Kelvin. 

E-Er is known as overpotential η. The overpotential on the anode is positives (E > 

Er) and negative on the cathode (E < Er). At large overpotential the second 

term in equation is negligible and the equation reduces to 
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,
, ,                                         [13] 

Where subscript “c” denotes the cathode reaction: 

, 	                                                   [14] 

The plot of ηc vs. I gives a linear relationship, and the slope is given by 
. 	

, 

which is called Tafel slope. 

1.2.3. PEM fuel cell catalysts 

• High intrinsic activities for fuel oxidation and O2 reduction 

• Large specific surface area (m2/g)  

• Good durability 

• Good electric conductivity 

• Inexpensive to make, good reproducibility 

Anode Electrocatalysis: 

H2 → 2H+ + 2e-                                   (E0=0.00 V, pH=0) 

H2 + Pt → 2Pt-Hads 

2Pt-Hads → 2Pt + 2H+ + 2e- 

• Pt, Pd have high exchange current density i0 (10-3 A/cm2) 

• For pure H2, low concentration (0.05 mg/cm2) of Pt is needed 

• CO, CO2 and H2S degrade anode performance through poising 

1.3. Background of study - effect of contamination on PEMFC 

Hydrogen PEMFCs produce energy cleanly and efficiently, but three major 

hurdles must be overcome before PEMFCs can be a viable energy source for the future. 
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The three hurdles are cost, infrastructure, and durability. Each of these obstacles is an 

active area of research and development. These three areas are also interrelated. For 

instance, higher durability reduces long-term costs, but the cost of creating a better 

infrastructure and components to increase durability may actually increase total costs. 

Other factor affecting PEMFC performance and durability is contamination. 

Contaminants are introduced into the PEMFCs with the incoming reactant streams (fuel 

and oxygen) or from materials used to construct the PEMFC stack or its accessories. 

Contamination can be classified into following three categories based on their sources: 

fuel (anode side), air (cathode side) and system contaminants (15). 

1.3.1. Sources of contamination 

1.3.1.1 Fuel contaminants 

The fuel-side contaminants originate from reformates, which the fuel (hydrogen) 

is derived from more cost effectively than electrolysis of water. The majority of 

commercial hydrogen is produced by the steam reforming of natural gas. The steam 

reforming process converts hydrocarbons into CO, CO2, and H2 (reformates). Natural gas 

contains many naturally occurring impurities, especially H2S and NH3. Even though, the 

reformate is purified to the desired H2 grade, but the purification processes can leave 

traces of residual CO, H2S, CH4 and NH3. These three fuel side contamination 

significantly affects the catalyst performance even at a very low concentration over a 

longer period of time (16, 17). Ammonia has been identified as one of the three main 

contaminants in hydrogen streams along with carbon monoxide and hydrogen sulfide (18, 

19). Scientists are involved in setting maximum ammonia level purity standards for 

hydrogen fuels. Initial specifications from the Freedom Car fuel cell tech team allowed 
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for up to 1 ppm of NH3 in the hydrogen feed gas (20). The Japanese Automobile 

Research Institute (JARI) has claimed that ammonia levels should be below 0.3 ppm. 

More recent specifications, such as SAE J2719 and ISO TS14687-2, state that ammonia 

should be limited to 0.1 ppm (18). 

During the reforming process organic sulfur species can be oxidized to SO2 or 

reduced to H2S. CO is always a contaminant even at ppb level. The residual CO, H2S, 

SO2, and organic sulfur species (thiophenes, mercaptons, etc.) resulting from 

hydrocarbon reformation can be one of the major issues in the path of commercialization 

of PEMFC. 

1.3.1.2 Air contaminants 

Most PEMFCs use the ambient air as a source of O2 and rendering the cathodes 

susceptible to airborne contaminants since using pure oxygen can be very expensive. SOx 

and NOx are two important airborne contaminants that are the subject of many studies 

(21-23). Contaminants can lead to permanent performance losses in PEMFC cathodes. 

SO2 level of 1ppm has been reported to cause significant contamination over a period of 

24 h (24). 

1.3.1.3 . System contaminants 

 Structural materials 

 Coolants* 

 Elastomers for seals 

 Elastomers for (sub)gaskets 

 Assembly aids (adhesives, lubricants) 
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 Hoses 

 Membrane degradation products 

 Bipolar/end plates 

 Ions from catalyst alloys 

 Compressor oils 

Contamination coming from components of a PEMFC or stack or accessories can 

extensively reduce the performance and durability of hydrogen PEMFCs. Cationic 

impurities such as NH4
+, Na+, Ca2+, Cs+ present in the assembly aids, hoses, seals (25, 26) 

compete with protons for the sulfonic acid sites in the polymer electrolyte membrane (27-

29). Also cations, such as Fe3+, Ni2+, Cu2+ and Cr3+ from the material of the bipolar plate 

can hinder the performance of the cell by  attacking the membrane resulting in its 

chemical and mechanical degradation (17).These impurities can be present in the 

hydrogen feed stream. Ammonia is often a byproduct of the reforming method used to 

produce hydrogen. In the fuel cell environment ammonia is converted to the ammonium 

cations. 

Hydrocarbon coolants have a strong affinity for platinum catalysts and can cause 

fouling of the surface (30). Plasticizers can leach out of tubing and sealing materials. 

Studies reported some of common materials which can be used in commercial automotive 

systems with PEMFCs to reduce the manufacturing cost can contaminant PEMFCs due to 

time associated exposure, including plastics, assembly aids, antioxidants and flame 

retardants (31, 32). Even the catalyst can contain contaminants, such as residual Cl− from 

starting synthetic materials, and sulfur in the carbon catalyst supports (33). The impurities 
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can be distributed wet gas streams or water in the humidifier can collect organic and ionic 

impurities. 

Halocarbons are proposed to be regulated as part of the International Organization 

for Standardization (ISO) and the Society of Automotive Engineers (SAE) fuel quality 

standards. The proposed limit for chlorinated compounds in both the ISO and SAE 

standards is 0.05 ppm of total chlorinated species (18, 34). 

Contaminating cations can also access the system from the air feed in coastal 

environments (sodium) or where salts are used as deicing agents (calcium). Finally, they 

can also be introduced into the system through corrosion of gas feed lines, bipolar plates 

and other stack and tubing components. The corrosion products of metal bipolar plates 

have been studied and have shown many different cations (primarily multivalent 

transition metals) (31, 35). 

There are significant repercussions when contaminant cations replace protons in 

the fuel cell ionomer. This type of replacement is of particular concern since most 

cationic contaminants have a higher affinity for the sulfonic acid sites than protons do 

(25). Cations in the membrane affect water management in the membrane and decrease 

the ionic conductivity of the membrane. The cations can also hinder the ability of the 

platinum catalyst in the cathode electrode layer to catalyze the oxygen reduction reaction 

(27). 

Although a major amount of research has been undertaken on other modes of 

durability failure, relatively little research has been carried out on cationic contamination. 

This may be because in earlier generation fuel cells other modes have often caused device 
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failure before cationic contamination could seriously degrade performance. Also, fuel 

cells used in research settings tend to use higher quality feed streams and newer 

components less prone to corrosion since cost is not as much of a factor. Studying 

cationic contamination becomes increasingly important as the durability and 

marketability of PEMFCs continues to rise. Understanding exactly how and to what 

extent cationic contamination effects PEMFCs will allow for the development of 

hydrogen purity standards, understanding of acceptable corrosion rates, new modes for 

diagnosis, new component design, and better methods to recover fuel cell performance. 

1.4. Experimental techniques 

1.4.1. Three electrode method 

A standard three electrode electrochemical cell can be used to study the oxidation 

or reduction half reactions that occur in a fuel cell (figure 1.5). In such an electrochemical 

cell it is possible to isolate the oxidation and reduction half reactions to study the catalyst 

contamination and the associated mechanisms and kinetics. For hydrogen fuel cells, the 

focus of this type of research is on the cathode half reaction, the reduction of oxygen, 

since it has a sluggish kinetics. A three electrode cell employs a working electrode, where 

the reaction of interest occurs, a counter electrode, through which the current flows to or 

from the working electrode, and a reference electrode, through which the potential is 

controlled without passing current. This configuration and the choice of electrode 

materials will be discussed later in greater detail. Ex-situ techniques like cyclic 

voltammogram, rotating disk electrode experiments, ring rotating disk electrode 

experiments assist greatly in isolating the poisoning effect on catalyst from membrane 

contamination by ion exchange. 
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1.4.2. Thin film rotating disk electrode (TF-RDE) method 

The rotating disk electrode (RDE) or rotating ring-disk electrode (RRDE) is one 

of the most commonly used analytical tools in electrochemistry. An RDE is a small metal 

disk inlaid into an insulating cylinder having a large base. The disk is situated in the 

center of the base. The cylinder is mounted on a metallic shaft connected to an electric 

motor. The shaft is perpendicular to the base, lies in the axis of the cylinder, and is 

connected to a potentiostat and to the metal disk by a wire. 

As shown in Figure 1.6, a disk electrode is set in an insulating rod, which is 

rotated at a constant frequency in a solution. Rotation of the solution induces a 

centrifugal force that causes radial movement. Due to the rotation convection current is 

set, the adsorbent species from the bulk to the electrode. 

An RRDE (figure 1.6) is a double-working electrode (WE) used in hydrodynamic 

voltammetry, very similar to an RDE. Instead of three electrodes it employs four 

electrodes. The electrode rotates during experiments, inducing a flux of the electrolyte to 

the electrode. The difference between an RRDE and an RDE is the addition of a second 

WE in the form of a ring around the central disk of the first WE. The two electrodes are 

separated by a nonconductive barrier and connected to the potentiostat through different 

leads. To operate such an electrode it is necessary to use a bipotentiostat. This rotating 

hydrodynamic electrode is used to detect peroxide formation at the ring. 

1.4.3. Cyclic voltammetry 

Since electrochemistry is an interfacial science, it permits characterization of the 

catalyst surface and its interaction with the gases and the electrolyte. One method of 

characterization of the surface is cyclic voltammetry, where the potential is scanned 
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linearly in one direction, and then scanned in the opposite direction to generate a 

complete voltage vs. current scan, as shown in Figure 1.7. Cyclic voltammetry is used in 

half cell electrochemistry to determine the electrochemical surface area (ECSA), and the 

potential dependence of the contaminant oxidation or reduction reaction. In the hydrogen 

region, protons interact with the catalyst surface, adsorbing to the surface in the cathodic 

scan and desorbing in the anodic scan. In the oxygen region, hydroxide ions oxidize the 

surface in the anodic scan and are reduced from the surface in the cathodic scan. Between 

these regions is the double layer region, in which only double layer charging occurs. The 

increased surface area from nanoparticles (as compared with smooth polycrystalline 

electrodes or single crystals) results in a higher double current magnitude in this region. 

1.4.4. Linear sweep voltammetry 

Linear sweep voltammetry is a general term applied to any voltammetric method 

in which the potential applied to the working electrode is varied linearly in time. 

Hydrodynamic voltammetry to assess oxygen reduction reaction was carried out applying 

LSV in O2 saturated solution with oxygen blanket on the electrolyte rotating the working 

electrode at 1600 rpm. LSVs were recorded from -0.01 to 1.0 V at scan rate of 20mV/s. 

An example of a typical LSV curve is given in figure 1.8. 

The limiting current, ilim was measured at the highest current at mass controlled 

region. The current at 0.9 V is also measured to calculate specific and mass activities. 

1.5. Research objectives 

The goal of this dissertation is to provide an increased understanding of fuel cell 

system contaminants and help provide guidance in the implementation, and where 
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necessary, the development of system materials that will not lead to undesirable loss of 

fuel cell efficiency due to contamination. In addition to that, studying ORR in presence of 

those contaminants will facilitate development of high performance fuel cell catalysts. 

The research objectives are to determine the sequence of experiments, developing 

protocols to study contamination effect, establishing a stable baseline with clean 

electrolyte for well reproducible data, perform electrochemical testing with the BOP 

leachates, down select materials to perform experiments with organic compounds, 

analyze the data and propose recovery strategy. 

A broad spectrum of BOP  materials (i.e., plastics, lubricant and adhesives) 

commonly used in present-day vehicles are studied with the goal of providing data to the 

fuel cell community that may help in selecting materials which limit contamination of the 

electrode. In addition, we report a cost-effective analysis technique for testing electrode 

performance exposed to PEMFC system components that may contaminate and develop a 

recovery strategy to address the contamination. 

The focus of the first part of the dissertation was to study effect of the BOP 

plastics. Then the organic functional group identified in the plastics leachates were also 

tested for its degradation effect. After the testing of BOP plastics, BOP assembly aids 

leachates were tested for their detrimental effect on the PEMFC electrode. 

In the second part the organic and anions identified in the leachates of assembly 

aids were injected the electrolyte and the loss of ECA and ORR currents were quantified 

and analyzed to understand the mechanism of contamination. This part was followed up 

by experimenting with mixture of organic and organic and anions. The focus of this part 
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was to understand the impact of mixture of the organic compounds, compare them with 

the individual compounds. The compounds detected in the leachates in the assembly aids 

were tested for their effects on the ORR of Pt/VC individually. But the leachates were a 

mixture of the organic compounds. So there was a need of testing the mixture of model 

compounds. 
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Figure 1.1. Projected cost of an 80-kWe fuel cell system at a production 
rate of 500,000/year (36). 
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Figure 1.2. Schematic of PEM fuel cell 
with electrodes 
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Figure 1.3. Fuel cell components (8) 
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Figure 1.4. Polarization curve of a typical PEM fuel cell under normal 
operation condition showing three main regions of fuel cell polarization: 
Kinetic, Ohmic, and Mass transport 
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Figure 1.5. Three electrode method for 
voltammtric experiments using thin film RDE 
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Figure 1.6. The rotating ring disk electrode (37) 
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Figure 1.7. A typical cyclic voltammogram in perchloric acid, showing 
different adsorption and desorption peaks. 
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Figure 1.8. A typical LSV sweep (after saturating the 
electrolyte with oxygen) for calculating the ORR activity 
of the catalyst. The current at 0.9 V and the limiting 
current were recorded. 
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Chapter 2. Literature review 

2.1. Overview 

Polymer electrolyte membrane fuel cell (PEMFC) presents a promising future of 

clean and renewable energy for commercial automobiles and stationery applications. 

Although the technology has existed for almost a century, commercialization was 

difficult due to its higher price over conventional power sources. Proton exchange 

membrane fuel cell converts energy from electrochemical reaction of hydrogen and 

oxygen in presence of a catalyst to electric energy which is used for domestic needs, 

automobile and space propulsion. PEMFC uses Pt on carbon as the cathode catalyst. But 

Pt can be easily poisoned by any contamination that is present in the system. 

The contamination can affect different functionalities of PEMFC like electrode 

kinetics, ionic transport, and mass transport. The electrode kinetics may be changed by 

poisoning electrode catalyst activity (S, CO adsorption on Pt catalyst), ionic transport 

may be affected by altering the protonic conductivity of catalyst layer by reducing 

membrane conductivity and by changing mass transport properties of gas diffusion layer 

(GDL) (38). 

2.2. PEMFC performance degradation in presence of air impurities 

In another study, Okada et al. showed effect of ammonium ions on persulfonated 

ionomer coated electrodes. The alkaline earth metal cations present in the PEMFC as 
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impurities hinder the ORR kinetics by suppressing the charge transfer through the 

ionomer in the fuel cell (25). 

The impact of sulfur impurities present in air on cathode side of PEMFC is a 

matter of concern because the SO2 tends to oxidize to a more stable state and adsorb on 

Pt. In a subscale fuel cell study Naghara et al showed the change of cell voltage at 

1Acm−2 during continuous injection of various air contaminants (0.5 ppm SO2, 0.6 ppm 

H2S, 2 ppm NO, 2 ppm NO2 and 5 ppm NH3) mixed with humidified simulated air to the 

cathode (figure 2.1.) (39). 

An exploratory study of H2S poisoning of membrane electrode assemblies (MEAs) 

in proton exchange membrane fuel cells (PEMFCs) consisting of Pt and Pt-Ru alloy 

electrodes is presented. Steady-state polarization curves are reported for each electrode 

after exposure to 50 ppm H2S at 70°C. Significant findings include (i) partial recovery of 

the MEA after 3.8 h of exposure to H2S; (ii) the degree of the recovery is influenced by 

the electrochemical oxidation of two surface species observed during cyclic voltammetry 

experiments; (iii) in contrast to CO poisoning, Ru has no effect on increasing MEA 

tolerance toward H2S poisoning; and (iv) increasing the Pt loading by 60% appears to 

quadruple the partially recovered current density at 0.6 V (i.e., 0.125 A/cm2 for Pt-Ru 

alloy and 0.575 A/cm2 for Pt electrodes) after exposure to neat H-2 for 24 h. 

The figure 2.2 shows the effect of sulfate species on cyclic voltammograms at 

50mV/s. The orange, green and red lines denote the CV scans after injection of 2 ppm 

SO2 80°C and the humidification temperatures were 80°C/80°C (100/100%RH). 
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It was hypothesized that sulfate species exist in the cathode catalyst layer after the 

I–V measurement since characteristics of the cyclic voltammograms are similar each 

other. Oxidation of sulfur adspecies to sulfate should occur during I–V measurement 

since the measurement procedure includes relatively high voltage (>0.9 V) period. 

Prolonged exposure of the common cathode air impurities like NO2, SO2, H2S etc 

has degenerative effect on fuel cell performance (Mohtadi, Lee et al. 2003). In that study, 

Mohtadi et al. had shown the effect of 200 ppm of H2S for 15 hours, 2.5 and 5 ppm of 

NO2 in air for 20 hours, 2.5 and 5 ppm of SO2 in air for 20 hours. The effect of NO2 on 

fuel cell performance was recoverable but for SO2 only partial recovery by CV scans was 

possible because the sulfur species weakly adsorbed on the Pt catalyst (40). The fuel and 

air mixture supplied to a PEMFC are the sources of contamination resulting in 

degradation and failure of a fuel cell stack (15, 40-42). This price is affected by the loss 

of performance when the electrodes are exposed to contaminants. While there are many 

existing studies on air impurities (15, 24, 43-45) very few literature exists on the 

technique of studying the effect of liquid phase organic and inorganic impurities 

originating from different parts inside the fuel cell. 

Sulfur species is adsorbed on Pt: 

Pt–S + 4H2O ↔ SO4
2− + 8H+ + 6e− + Pt 

The voltage effect on SO2 has been reported by Swider-Lyons et all. The study 

was important because SO2 oxidation state changes with electrode potential. As the 

potential was increased from 0.5 V to 0.7 V sulfur oxidation state reduces from 0 to -6 

(from S to SO2 to SO3
- / SO4

=). The sulfur coverage decreased with increasing cathode 
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potential, with almost zero coverage at 0.9 V (26). This study showed the potential to 

operate the fuel cell with contaminants present in the air stream and the analysis of 

mechanism gives a path forward to restricting the extent of contamination. 

To study the effect of contaminants (air and liquid phase) on PEMFCs in-situ, Pt 

cyclic voltammetry has been used to measure poisoning of MEA (40, 44, 46). The 

experiments performed inside a PEMFC explain the overall poisoning effects on the 

electrochemical properties of MEA, but do not isolate the effect on ORR kinetics. The 

purpose of this report is develop electrochemical testing protocols to understand the 

fundamentals of oxygen reduction reaction (ORR) (47) and electrochemical area using 

thin-film rotating disk electrode (TF-RDE) method. 

2.3. Activity requirements for oxygen reduction catalysts 

Platinum nanoparticles supported on high surface area carbon are the most widely 

used electrocatalyst for PEM fuel cell due to its higher oxygen reduction reaction (ORR) 

activities at PEMFC cathode during the fuel cell operation. Unfortunately the ORR has a 

slow kinetics that requires increased catalyst loading which increases the manufacturing 

cost. In addition to that, the ORR activities of Pt electrocatalyst are adversely affected in 

presence of contaminants. To solve the two aforementioned problems, state of the art 

Pt/C catalyst manufacturing facilities are employing different techniques to characterize 

and study the oxygen reduction reaction to enhance the activities of the catalyst. For 

example, in an attempt to increase available surface area, particle size effects (48) are 

being studied in non-absorbing electrolytes with PFSA ionomers since higher dispersion 

of  Pt particles can lead to higher surface area and lower Pt loading. A recent study has 

compared three catalysts solid Pt disk, Pt black and 46% Pt/C (TKK) to show the effect 
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of Pt size on the OH adsorption. The potentials for oxides adsorption and desorption 

shifted towards the H2 potential (i.e. Lower potential) with dispersed Pt on carbon being 

the highest and Pt disk (i.e. of 46% Pt/C (TKK) > Pt black > Pt disk) (49). Therefore 

there is an impact of the Pt particle size on the ORR. In this study 46% TKK Pt/C was 

chosen as the catalyst for its high activities and lower influence on the adsorption of 

OHads which was believed to reduce ORR activities in 0.1 M perchloric acid (50, 51). 

Theoretical studies on the HOR kinetics of Pt electrodes are based on the Tafel–

Heyrovsky–Volmer mechanism: 

H 2 + 2Pt ↔ 2Pt −Hads (Tafel reaction) 

H2 + Pt → Pt-Hads + H+ + e− (Heyrovsky reaction) 

Pt-Hads ↔ Pt +H+ + e− (Volmer reaction) 

H2 ↔ 2H+ + 2e− (overall reaction) 

2.4. Electrochemical area (ECA) 

Studies have shown that alkali and alkaline earth metal cations or transition metal 

cations strongly hinder the kinetics of the oxygen reduction reaction (ORR) on platinum 

covered with perfluorinated ionomer membranes, relating to the membrane 

contamination and performance degradation in polymer electrolyte fuel cells. The 

organics from the Balance of Plant (BOP) materials can also contaminate the catalyst and 

the membrane and be responsible for the performance loss in a PEM Fuel Cell. The 

preliminary cyclic voltammetry studies done at GM and NREL (31) has showed that off-

the-shelf structural plastics (BOP) like Polyamides can reduce the available Pt sites in the 

catalyst as shown in figure 2.3. 
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2.5. Oxygen reduction reaction (ORR) 

Pt on Vulcan carbon was chosen as the ORR catalyst since it is known as the most 

commercially used catalysts in low temperature PEMFCs. It has ca. 3.4 nm diameter 

particles dispersed on Vulcan carbon (30%) (52) Because of it high activities. But it is 

also known for its susceptibility towards contamination. Many studies have been 

conducted to quantify and compare the catalyst ORR activities of Pt/VC prepared with 

different techniques and under different experimental conditions (5, 51, 53-55). Nafion® 

is mixed in the catalyst ink suspension so that Nafion thickness is less than 0.2 μm, to 

reduce film diffusion resistances become negligible so that it doesn’t affect kinetic 

current densities (47). The significantly reduced catalyst loading used in the thin-film 

RDE method expands the range of experimentally accessible mass-specific current 

densities to values which are typically obtained in PEM fuel cells i.e. 2-3 AmgPt
-1, 

corresponding to 0.9 V. 

The poisoning of Pt catalyst by air impurities such as NOx was discussed in 

details with ex-situ TF-RDE studies in liquid electrolyte, conducted by Zhu et al (56). 

They found that the absorption of NOx on metallic Pt is more significant than on Pt 

oxides, and this absorption is mainly a chemical process rather than an electrochemical 

process. Although the absorption of NOx on Pt surface is not strong, exposure to NOx 

contaminants can result in significant performance degradations of Pt/C catalysts. The 

ORR mechanism remains unchanged after the NOx poisoning, because Tafel slope 

remains the same for the unpoisoned and poisoned Pt/C catalysts. This indicates that the 

NOx poisoning on Pt/C catalysts is just due to the reduction of electrochemically active 

surface area. Since lower potentials facilitate the reduction of NOx to water soluble NH4
+, 
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reducing the working potential might mitigate the poisoning of NOx. However, the 

performance loss due to the NOx poisoning can be completely recovered by the oxidation 

removal, but not by the reduction. 

2.6. BOP materials as sources of contamination 

The BOP materials are used in different parts of PEM Fuel Cell power system 

as discussed in the introduction. The cost of the BOP system ($49/kW in 2012 (57)) 

has risen in importance. Lowering the cost is one of the most important goals before 

commercializing PEMFC. Therefore, use of cheap off-the-shelf BOP materials as 

fabrication materials (plastics), assembly aids is justified in the light of decreasing cost. 

Figure 2.4 shows the cost of different BOP plastics which can be used as fabrication 

materials in PEMFC. The materials with higher cost ($12.50 to $30.00) on the right 

side of the chart are currently used by the manufacturers and to decrease the BOP cost 

the plastics on the left side of chart should be considered for use. Therefore some of 

the low-priced plastics in the left side of the figure 2.4 were chosen to study for their 

contamination effect. However, impact of those materials on Fuel Cells under the 

normal operating conditions has scarcely been reported so far. Most of the studies 

have focused on air impurities than organic impurities from the BOP materials. 

Lowering the cost of PEMFC system component requires understanding of the 

materials used in the system components and the contaminants that are derived from 

them, which have been shown to affect the performance and durability of fuel cell 

system. Lower cost commodity polymers are suitable for larger components such as 

cathode air handling systems. Higher cost engineering polymers are suitable for 

smaller, precision components such as impellers and valves and sensors. 
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Results from GM experiments on 4 BOP materials depicted as Z1, Z2, Z3 and Z4 

in figure 2.5 show voltage drop in in-situ studies in a 50 cm2 fuel cell. This was one of 

the first studies to show the degradation effect of BOP contamination over 40 hours. 

2.7. Effect of contamination on ECA and ORR 

Liquid phase contaminants may adsorb on Pt on both the cathode (where ORR 

takes place) and the anode (where hydrogen reduction reaction or HOR takes place) in a 

PEMFC much like air contaminations (SO2, NH3, CO, CO2, H2S etc.) (15, 23, 24, 40, 44, 

56). Since the contamination effect on the HOR is less pronounced compared to the ORR, 

it requires detailed investigation because its slower kinetics combined with the effects of 

contaminants can result in high over potential and loss in fuel cell performance (44, 58). 

So it will be useful to develop protocols (59) for systematic understanding of the 

contamination process from the liquid phase contamination such as chemicals leached out 

from the stack, on Pt/C using ex-situ methods like rotating disk electrode to develop 

commercially viable catalyst with high ORR activities with specific application in 

PEMFC. 

2.7.1. Effect of additives in coolants 

The performance of a fuel cell has been found to degrade over time in the 

presence of not only air contaminations but also system derived contamination in a 

PEMFC (11). For example, recent studies on the additives of the glycol based coolants 

have shown detrimental effects on Pt on Vulcan carbon catalyst. These contaminants 

originate from ethoxylated nonylphenol surfactant, and azole- and polyol-based corrosion 

inhibitors which are frequently added to the commercially available BioGlycol coolants 

to enhance specific functionalities. K.E. Swider Lyons et al has conducted a study with 



www.manaraa.com

40 

three above mentioned additives and glycol mixtures and have observed that the lost 

ECA could be fully recovered in clean electrolyte for the mixture with the surfactant pure 

glycol-water, glycol-water-surfactant mixtures and glycol mixture containing the polyol 

corrosion inhibitor, while coolant mixtures with the azole corrosion inhibitor caused 

irreversible losses to the ECA and oxygen reduction reaction (ORR) activity. The ECA 

and ORR activity could be recovered to 70% of its initial values after voltammetric 

cycling to 1.50 V in case of azole poisoning (30). 

2.7.2. Effect of Ammonia on membrane 

Ammonium ions are probed for their impurity effect in PEM Fuel Cell (60). Even 

ppm level trace of ammonia irreversibly decreases the performance of the cell. It also 

replaces the detachable protons in the Nafion, decreasing the membrane conductivity. It 

affects the HOR in anode and ORR in cathode as well as poisons anode catalyst layer and 

membrane. The additives from fuel cell also inhibits ORR (61). 

2.7.3. Effect anions on catalyst 

In previous studies from N. M Markovic et al results from smooth polycrystalline 

and single crystal Pt electrodes, the ORR activity decreases in the order ClO4− > HSO4− > 

Cl−, consistent with the increasing adsorption bond strength of the anions. The ORR 

characteristics of Pt/Vulcan in the presence of adsorbed Cl− can be interpreted as a 

superposition of the individual ORR properties of the Pt(111)|Clad and Pt(100)|Clad solid 

|liquid interface with respect to both the kinetic limitations and the formation of H2O2. 

This is in qualitative agreement with the proposed cubo-octahedral Pt particle shape. 

Although these results were obtained in liquid electrolyte, similar reduced activity and 

enhanced formation of H2O2 can be expected in a PEMFC, therefore indicating the 
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necessity of chloride-free MEA preparation and, more importantly, of chloride free 

humidified feed-streams in order to avoid performance losses and/ or membrane 

degradation (62). 

2.7.4. Experimental approach in studying the effects of liquid phase contaminants in 

PEMFC using thin film RRDE 

Researches had shown that the slow ORR kinetics on carbon supported Pt 

catalysts are the most preventive aspect in the energy conversion efficiency of state-of-

the-art PEM fuel cells and the development of improved catalysts would have a dramatic 

impact on fuel cell. Due to the different electron yields of the two reaction paths (H2O2 

versus H2O formation), catalyst development for oxygen reduction catalysts requires that 

the electrocatalytic activity as well as the product distribution for the ORR on new 

catalysts can be determined quantitatively under PEMFC relevant conditions (47). 

Owing to the deleterious effect of H2O2 on the stability of polymer electrolyte 

membranes, the extent of H2O2 formation on the cathode catalyst in the potential region 

above ca. 0.7 V (i.e. at the typical operating potential) is a critical criterion for the choice 

of suitable catalysts. This is crucial, however, not only for the ORR but also for the anode 

reaction. Oxygen reduction to H2O2 may also occur on the anode catalyst at the typical 

operating potential of below ca. 0.1 V, since molecular O2 can come in contact with the 

anode catalyst either due to the significant O2 cross-over through thin state-of-the-art 

membranes (e.g. Nafion® 112 and GORE Select) or via the air-bleed used for operation 

with reformates. 
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The oxygen reduction reaction on a typical Pt/VC catalyst in the presence of 

adsorbed Sx. These electroanalytical studies of Pt poisoning with adsorbed S species 

support prior observations made in fuel cell studies, plus add additional insights. RRDE 

measurements show that the ORR activity decreases significantly as the initial coverage 

of S species increases > 0.37, drastically changes both the activity and the reaction 

pathway of the ORR on the Pt/VC catalyst from a 4-electron process to 2-electron 

process reaction (63). 
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Figure 2.1. Loss in voltage at higher current density in a 
polarization curve due to the exposure to air contaminants (64) 
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Figure 2.2. Durability tests before and after SO2 contamination 
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Figure 2.3. CV showing loss of Catalyst sites after 
contaminating with structural plastics (BOP materials) leachate 
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Figure 2.4. Examples of plastics with generalized costs for the system 
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Figure 2.5. Voltage drop with time after infusing BOP 
leachates contaminating a fuel cell 
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Chapter 3. Effect of BOP structural plastics on Pt/C 

In this chapter detailed experimental process in presented along with methods for 

establishing a stable baseline of the activities related to oxygen reduction reaction on Pt 

catalyst (46% Pt on XC72 Vulcan carbon). The focus of this study is to design 

appropriate sets of experiments to study the effect of liquid phase contaminants on Pt/C 

catalyst in a liquid electrolyte using thin-film rotating disk electrode (TF-RDE) method at 

room temperature. This ex-situ voltammetric approach quantitatively measures the loss of 

electrochemical surface area and oxygen reduction reaction. It also includes a route to 

recovery of the lost electrochemical surface area (ECSA or ECA) and oxygen reduction 

reaction (ORR) activities. As the part of the study the electrodes coated with 46% Pt/C 

were benchmarked to estimate the losses due to voltammetric cycling and other 

associated steps without adding any contaminants from outside source. Leachates from 

BOP materials that may be used in fuel cell were used as examples of contamination 

behavior. Loss incurred during the experiments was quantified followed by recovery 

experiments. The effect of the organic compound (found in the leachates) on ORR was 

evaluated. 

The additional information on the methodology and background studies can be 

found in appendices A, B and C. 
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3.1. Introduction 

Polymer electrolyte membrane fuel cell (PEMFC) presents a promising future of 

clean and renewable energy for commercial vehicles and stationery applications. 

Although the technology has existed for almost a century, commercialization has been 

difficult due to its higher cost over conventional power sources. This cost is also affected 

by the loss of performance when the electrodes are exposed to contaminants. The fuel 

and air mixtures supplied to a PEMFC have been shown to be a major source of 

contamination resulting in degradation and failure of a fuel cell stack (15, 40-42). While 

there are many existing studies on air contaminants (15, 24, 43-45), very little research 

exist on the technique of studying the effect of liquid phase organic and inorganic 

contaminants originating from balance of plant materials components. This type of 

contamination may also decrease the performance of the catalyst for the oxygen reduction 

reactions (ORR) activities. Furthermore, under certain operating conditions of a PEMFC, 

catalyst degradation may be only partially reversible. 

Platinum nanoparticles supported on high surface area carbon are the most widely 

used electrocatalysts for PEMFC due to their higher oxygen reduction reaction (ORR) 

activities. Because of its slow kinetics, the oxygen reduction reaction of Pt 

electrocatalysts may be particularly susceptible to contaminants. State-of-the-art Pt/C 

catalyst manufacturing facilities are employing techniques to characterize and study the 

ORR to enhance the activities of the catalyst. For example, in an attempt to increase 

available surface area, particle size effects have been studied in non-absorbing 

electrolytes with perfluorosulfonic acid (PFSA) ionomers. In particular, it has been 

shown that higher dispersion of Pt particles can lead to higher surface area and lower Pt 
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loading (65). A recent study has compared three catalysts – solid Pt disk, Pt black and 46% 

Pt/C (TKK- Tanaka Kikinzoku Kogyo), to show the effect of Pt size on the OH 

adsorption. The potentials for oxides adsorption and desorption shifted towards the H2 

potential (i.e. lower potential) with dispersed Pt on carbon with the highest and Pt disk 

with the lowest shift (i.e.in the order of 46% Pt/C (TKK) > Pt black > Pt disk) (5). This 

shift of Pt-OH adsorption/desorption potential indicates that in case of 46% Pt/C (TKK) 

the adsorbing species from the electrolyte affect the ORR less than the Pt disk and Pt 

black catalysts (5). Therefore, there is an impact of the Pt particle size on the ORR. In 

this study, 46% TKK Pt/C (3.4 nm particle size with 30% dispersion) was chosen as the 

catalyst for its high activities and lower influence on the adsorption of OHads which has 

been shown to reduce ORR activities in 0.1 M perchloric acid (50, 51). 

To study the effect of contaminants (air and liquid phase) on PEMFCs in-situ, Pt 

cyclic voltammetry has been used to measure poisoning of MEAs (40, 44, 46). The 

experiments performed with a PEMFC explain the overall poisoning effects on the 

electrochemical properties of MEA, but do not isolate the effect on ORR on the catalyst. 

The purpose of this paper is to present the development of electrochemical testing 

protocols to understand the effect of contamination from BOP material on ORR and 

electrochemical area using TF-RDE method. TF-RDE has been used as an effective tool 

for studying catalyst contamination for air contaminants (66, 67) since it isolates the 

effect on the catalyst from the MEA. 

In the first part (sections 3.1 to 3.3), the study focuses on the contamination from 

the leachates of BOP materials (structural plastics) that may be used in fuel cell stacks. 

The contamination study involves holding the working electrode (WE) at a potential for a 



www.manaraa.com

51 

specified period of time to allow the contaminants to adsorb on Pt sites. The study also 

involves recording the current scanned over a potential range (for performing CVs and 

LSVs) to quantify any loss of ECA and ORR activities. Therefore, any unwanted loss in 

ECA or ORR activities resulting from the holding and/or cycling the WE over a range of 

potential was determined in a clean electrolyte (control). The second part of the study 

(section 3.4 and 3.5) quantifies and assesses the variation of baseline loss of ECA and 

ORR activity resulting from preparation of different inks. 

Finally, sections 3.6 and 3.7 present the poisoning characteristics of an organic 

compound (found in those leachates from the structural plastics) on ORR activities of Pt 

on Vulcan carbon. This compound is used as an example to demonstrate the role of 

polymer degradation product from the structural plastics that can be used in PEMFC, on 

contamination using three electrode rotating disk electrode (TF-RDE) method. 

3.2. Experimental 

A rotating disk electrode was employed in all measurements, using a three 

electrode cell apparatus. The electrochemical cell apparatus consisted of glassware (5 

neck electrochemical cell), wires, and H2 gas reference electrode (RE) insert. 

The electro-chemical cell apparatus was initially soaked in concentrated H2SO4 

for a minimum of 12 hours followed by soaking in a solution containing 1 package of 

Nochromix® in 7.6 l of concentrated H2SO4 and Nochromix solution for another 12-24 

hours. After the acid soaking, the cell apparatus was boiled twice in DI water for 3 hours 

using fresh 18 MΩ water. 
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3.2.1. Catalyst ink and thin film electrode preparation ORR on Pt/C 

Catalyst inks were prepared in a small glass vial with 7.4 mg of TEC10V50E 

catalyst dissolved in 7.6 ml DI water and 2.4 ml isopropyl alcohol (IPA). Note: 

TEC10V50E catalyst is TKK 46% Pt on Vulcan carbon (i.e. Pt/VC). Then, 40 µl of 

Nafion® (5wt %) was added to the vial. The ink solution was sonicated in an ice bath for 

2400 s. The ice was changed every 3-4 minutes as it melted. A 5mm diameter glassy 

carbon tip (AFE2M050GC) on a Teflon cylinder (Pine Instruments) was used for the 

working electrode (WE). It was polished using a 0.05 μm alumina polish suspension and 

a few drops of DI water on a Buehler MicroCloth for 5 minutes followed by rinsing in DI 

water. The electrode was then sonicated in DI water (18 MΩ) to remove excess polish 

followed by sonication for 15 min in a solution of 70% by volume IPA in DI water. After 

sonication, 10 µL of ink was dispensed carefully at once on the electrode glassy carbon 

tip to build an evenly dispersed thin film. The tip was then dried in an oven at 40°C for 

20 min. Thus, the Pt loading was ca. 17.4 μgPtcm-2. Catalyst preparation must be very 

precise and the loading for this study was chosen to be ~ 18 μgPtcm-2 to avoid any mass 

transport losses that was encountered in case of thick catalyst films. 

3.2.2. Electrochemical apparatus preparation 

The electrochemical glassware was filled with 0.1 M HClO4 acid from GFS 

Chemical (highest purity perchloric acid, maximum level of chlorides of 0.00001%). A Pt 

wire (placed inside a glass insert and connected to hydrogen gas) served as the RE 

(reversible hydrogen electrode). The counter electrode (CE) was also made of Pt wire and 

Pt mesh spot welded on the wire. Excess O2 was removed from the electrolyte by purging 

N2 for at least 5 min. The N2 or O2 (research grade purity, by Air Products Ltd.) gas was 
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passed through water trap before entering the cell to eliminate any possible gaseous 

contaminates. 

3.2.3. Electrode conditioning 

All TF-RDE measurements were performed at room temperature using a Pine 

Instruments WaveNow potentiostat (model # AFTP1). Voltage ranges were measured 

with respect to RHE. The electrolyte (0.1 M HClO4) was purged with N2 for 20 minutes 

or until the OCV was < 0.4V. Note: a drop of water on the WE helps prevent 

accumulation of N2 bubbles on the surface. The WE was mounted on the shaft of the 

electrode rotator (MSR style rotators) and slowly lowered inside the cell so that the tip 

was well inside the electrolyte (the vertical distance from the RHE insert to the tip being 

one and half times the diameter of the Teflon cylinder). The tip was maintained at the 

same depth for each experiment to keep the solution resistance the same across all TF-

RDE experiments. The electrode was electrochemically conditioned from ~0.025 to 1.2 V 

at a scan rate of 100 mVs-1 for 100 cycles in the de-oxygenated electrolyte while rotating 

the electrode at 2500 rpm. The minimum potential was chosen so that the inflection point 

for Hupd region (hydrogen evolution) was clearly discernible but it was not so low as to 

generate a lot of hydrogen in the electrolyte. 

3.2.4. Determination of time to reach equilibrium with the Pt catalyst 

To determine the time by the organic molecules to reach an equilibrium 

adsorption state, the CVs were performed at 100 mVs-1 and the electrolyte was 

contaminated at 1.05 V in a separate set of experiments. Caprolactam was used as the 

model contaminate for these experiments. Completion of one full cycle (1.05 V → 0.025 

V→ 1.05 V) required 20 s. Therefore, after injecting the contaminant at 1.05 V, time 
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taken by the contaminants to reach electrode surface could be calculated by counting the 

number of cycles before observing any change in the CV scan. 

3.2.5. Rotating disk experiments to measure ECA and ORR activity of Pt/C 

In the first part of the contamination experiments, three leachates (from structural 

plastics) were tested for their impact on the ECA. In the second part, an organic 

compound was tested for its effect on both ECA and ORR (figure 3.1). 

Since the leachates from the structural plastics were a mixture of both organics 

and inorganics, longer time was needed for the leachates to reach equilibrium with the Pt 

sites. But the organic compound was injected in its pure form. So, it attained equilibrium 

with the Pt sites quicker than the leachates. 

3.2.6. Effect of leachates to measure ECA 

The electrode was conditioned as described in section 2.3. For the baseline, a full 

scan CV (i.e. 0.4V → 1.05 V → 0.025 V → 1.05 V → 0.4 V) and a partial CV (i.e. 0.4 V 

→ 0.5 V → 0.025 V → 0.5 V → 0.4 V) were measured at a scan rate of 20 mVs-1 in an 

N2 environment (i.e. the electrolyte being blanketed with N2) with no rotation. The ECA 

was determined from the partial scans. 

After baselines were established in clean electrolyte, the leachates were injected 

while holding the WE at 0.4 V for 10 mins and 3 cycles of CVs were performed to 

measure the ECA loss. The step was repeated six times (total 60 mins hold) to allow the 

contaminant molecules sufficient time to come to equilibrium with Pt sites. The 

contamination step was repeated for different concentrations of the leachates. 
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3.2.7. Effect of organic compound to measure ECA and ORR 

For the second part of the experiment with organic compound, baseline CVs were 

established as described on section 2.5.1. After the partial baseline CV, the gas valve was 

switched to purge the electrolyte with O2 for 7 mins and then an ORR was measured from 

-0.01 to 1 V at 20mVs-1. This ORR served as the baseline for the ORRs performed after 

contaminating the electrolyte. 

The contamination was added with a pipette while the WE was held at 0.4 V and 

purging with N2 and rotating at 2500 rpm. The hold was continued for 5 mins as 

determined by previous experiments (section 2.4). A short CVa (~0.025 to 0.5 V) was 

recorded for 3 cycles at 20 mVs-1, labeled ECAa. The ECA was calculated from this CV 

and a comparison with the baseline was recorded to check the change in ECA after 

contamination. Next, for ORR experiments the gas was switched to O2 and after the 

solution was saturated with O2, an LSV sweep (-0.01 to 1 V) was performed for 

comparison of ORR with baseline. The latter was used to determine the contamination 

effect on ORR. A short CV (~0.025 to 0.5 V) was recorded for 3 cycles at 20 mVs-1 after 

changing the gas to N2 to allow the calculation of another ECA, label ECAb. The 

difference between ECAa and ECAb measured any change in ECA after ORR. Finally, 3 

cycles of full CV (~0.025 to 1.05 V) were recorded at 20 mVs-1 to measure any change in 

current above 0.5 V. These steps were repeated for different concentrations of organic 

compound. 

Note that the electrolyte was well mixed (rotation speed 1600 rpm) during the 

addition of leachate while measuring the ORR. Note also that ORR was measured on pre-
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reduced Pt that has been held at 0.4 V. This ensures no oxidation of the leachate 

composition. Refer to figure 3.1 for the detailed steps. 

3.2.8. Recovery of contaminated electrode 

The recovery process attempted to discover a potential between 0.75 and 1.05 V 

where the contaminants might be oxidized for the purpose of recovering the lost Pt sites 

in the catalyst by desorption of the contaminants. Experiments to determine the extent of 

recovery were performed with a clean set of electrochemical apparatus (with clean 

reference and counter electrodes). The electrolyte 0.1 M HClO4 was purged with N2 for 

20 min. The recovery of a contaminated electrode consisted of two parts – a potential 

hold at 0.75, 0.85, 0.95, and 1.05 V, followed by potential cycling (10 cycles) from 

~0.025 to 1.05 V in a clean electrolyte. 

The WE was rinsed with DI water before transferring it to clean the electrolyte. It 

was then held at 0.75 V for 5 minutes. This was repeated another 3 times with holds at 

higher voltages (0.85, 0.95, and 1.05 V). During the holds, the electrolyte was purged 

with N2 and WE was rotated at 2500 rpm. A short CV (~0.025 to 0.5 V) was recorded 

from the hold potential to ~0.025 and finally to 0.5 V immediately after each hold. This 

was repeated for 3 cycles at 20 mV/s to check the change in ECA due to recovery. In the 

end, the effect of residual contaminant (recovered ECA) was tested from the ECA 

calculated from the final CV scans (~0.025 to 1.05 V). 

The flow was switched to O2 purging (with 2500 rpm rotation) for 7 minutes. 

After the electrolyte was saturated with O2, the rotation was reduced to 1600 rpm and an 
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LSV sweep was performed anodically from -0.01 V to 1 V. Refer to figure 3.1 for the 

detailed steps. 

3.2.9. Preparation of contaminant solutions 

Structural plastics (BOP materials) that may be used in fuel cell stacks were 

chosen for testing during the contamination experiments. They were selected from a wide 

range of commercially available plastics with varying properties and functions in a fuel 

cell. The effects of widely used plastics in fuel cells – Ultramid® (grade A3WG7 

BK00564) and EMS Grivory® (grade GVN‐35H Black) from BASF and Ryton® R4-

220BL from Chevron Philips, are described in this paper as examples of contamination. 

Ultramid® is a poly amide 6,6 (nylon) and comparatively less expensive than Ryton® 

(polyphenelyne sulfide). EMS Grivory® is poly amide 6,6/6 (nylon). It is slightly more 

expensive than Ultramid® but less expensive than Ryton®. The contamination solution 

was prepared from pellets of the selected materials. The plastic pellets were measured, 

weighed and soaked in DI water at 90°C for 6 weeks. The wetted surface to volume ratio 

was 150 mm2ml-1. At the end of 6 weeks, the TOC (257 for Ultramid®, 282 ppm for 

EMS Grivory® and 7 for Ryton®) was measured and the leachates were analyzed using 

GCMS, IC and ICP-OES. For detailed chemical analysis results on the leachates, please 

see (68, 69). 

Since the quantitative composition of the leachate extracts was unknown, the 

amount of solution to be injected in the electrolyte was determined based on the 

concentration of C atoms in the leachate based on total organic carbon (TOC) content in 

ppm (g of C per 106 g solution). Since the solution is water, the TOC in this case becomes 

mg of carbon per liter. 
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The concentrations of the leachates in terms of C atoms were 0.36, 0.18, 1.8, 3.6, 

18, 36 and 180 µM of carbon for 145 ml plus contaminant volume of electrolyte. For 

detailed calculation please see (70). 

From the GCMS analyses, caprolactam was found in the leachate of Ultramid® 

and dimer of caprolactam was found in EMS Grivory® but nothing was detected in the 

leachate of Ryton®. Therefore, caprolactam (figure 3.3) was chosen for further studies. 

Caprolactam is extensively used in synthesizing Nylon 6 by the ring opening 

polymerization method. This explains the source of caprolactam in the leachate of 

Ultramid® which is a nylon 6,6. The solubility of caprolactam in DI water is very high 

(4560 gl-1). A solution of 10,000 ppm, 10 gl-1 of caprolactam was prepared for the 

following experiments. The contamination concentration of caprolactam was for 1, 5 and 

20 M in the electrolyte. 

3.3. Results and discussion 

All potentials reported in this paper were measured with reference to hydrogen 

electrode. In the subsequent sections, the results obtained from the experiments include 

loss of ECA due to potential holding and cycling in clean electrolyte, the time taken by 

contamination to reach equilibrium with the Pt electrode, extent of both contamination 

and recovery, and impact on ORR activities. 

3.3.1. Part I. Experiments with leachates from BOP materials to determine their 

role in decreasing ECA 

Developing a protocol to study the effect of contaminants on the Pt sites involved 

a complex multi-step process that emphasized details like change in ECA due to cycling 
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and holding in a blank electrolyte (no contaminants present), time taken by contaminants 

to reach equilibrium with the Pt, ECA loss due to contaminants, etc. 

Figure 3.2 shows that for the CVs in HClO4 there are three distinct peaks at 

potentials of 0.14, 0.25 and 0.8 V due to adsorption/desorption of protons and Pt-

oxidation or reduction. The ECA was calculated by integrating the peak under the Hupd 

region (the hashed area shown in figure 3.2 between 0.04 and 0.4 V). The catalytic 

activities are greatly affected by different electrolytes-. Since bisulphate ions have greater 

affinity towards adsorbing on Pt than perchlorate ions, 0.1 M HClO4 was chosen as the 

electrolyte for the CVs. 

3.3.2. Effect of holding the electrode at OCV and at 0.4 V on ECA 

The purpose of these experiments was to determine the effect of holding the 

electrode at different potentials on ECA loss. When the contaminant is injected in the 

electrolyte, the molecules take some time before adsorption equilibrium on the Pt is 

established. The transportation of the molecules depends on the rotation speed of the 

electrode. The latter induces a convection current inside the cell and thereby facilitates 

the transportation of the contaminant molecules. During this period, the electrode was 

held at a certain potential eliminating the chances of any electrochemical change 

(oxidation or reduction) of the molecules. The hold potentials were chosen to be 0.4 V 

and OCV (i.e. 0.85-0.9 V). At 0.4 V, the CV did not show Pt oxidization reduction peaks, 

but rather a double layer region (resembling capacitance) was observed. Therefore, 

holding at 0.4 V ensured that no contaminant molecule was oxidized or reduced and the 

sole effect of contamination was observed in the consecutive CV cycles. Alternatively 

holding at OCV may allow for oxidation of the contaminant that was not possible at 0.4 
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V. As shown in figure 3.4, after holding the WE at OCV for 10 min, a loss of 10% was 

observed, which was more than the loss due to the holding at 0.4 V (i.e. 7%). Note that 

repetitive CV cycling can also change the ECA due to CV cycles by 10% over a span of 

30 min (70). 

3.3.3. Example of contamination behavior: Effect of BOP materials (structural 

plastics) on ECA 

Table 3.1 summarizes the contamination behavior of the electrolyte containing 

three balance-of-plant (BOP) materials such as Ultramid®, EMS Grivory® and Ryton® 

that may be used as structural plastic in PEMFCs. The column labeled time corresponds 

to a hold (at 0.4 relative to the RHE) of 10 min plus the time to perform 3 scans at 20 

mV/s between ~0 and 0.5 V. Since the leachate contained both organic and inorganic 

materials, sufficient time was allowed to the leachate to reach equilibrium with Pt sites by 

repeating the hold at 0.4 V and subsequent 3 CV scans six times. The clean electrolyte 

(i.e. control experiment) showed some ECA loss due to cycling and holding which were 3, 

8, 11, 14, 19, and 23% as the WE was cycled for three times after six successive holds for 

10 mins. This loss of ECA from clean electrolyte can be attributed to the adsorbate 

species from the electrolyte (71). 

The final concentration of carbon in the electrolyte due to addition of leachates 

was 180 µM. For comparison, there was a 33%, 22% and 5% loss for Ultramid®, EMS 

Grivory® and Ryton®, respectively, after the first hold cycle (before subtracting the loss 

due to holding and cycling from the control experiment). The final ECA loss after six 

holds for Ultramid®, EMS Grivory® and Ryton® were 62%, 52% and 12%, respectively. 

The value of ECA loss due to blank electrolyte was subtracted from the absolute values 
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of loss during contamination with any leachate to estimate the actual effects of 

contamination. It was found that after the fourth hold for 10 minutes (2700 s) the actual 

ECA loss for both cases of contamination got close to the saturation point. Therefore, the 

ECA loss due to the addition of leachates attained equilibrium after ~ 40 min. This also 

proved that contamination is a time dependent process. Figure 3.5 shows all saturation 

points as a function of concentration of the leachates (adsorption isotherm). It also 

illustrates that the effect of Ultramid® and EMS Grivory® on ECA loss was much more 

severe than that of Ryton®. This correlates with the TOC of the Ultramid®, EMS 

Grivory® and Ryton® (257 ppm, 282 ppm and 7 ppm, respectively). Due to the 

difference in TOC, 30 ml of Ryton® leachate was injected in the electrolyte while only 

1.21 ml of Ultramid® and 1.1 ml of EMS Grivory® were injected to obtain a final 

concentration of 180µM of organic carbon concentration from the leachates in the 

electrolyte. 

3.3.4. Effect of potential holding and cycling on recovery of the contaminated CVs 

The recovery of Pt sites by holding the WE was measured with three partial CV 

scans performed immediately after each hold. The objective of performing the CV scans 

incrementally from 0.75 V, 0.85 V, 0.95 V and 1.05 V to ~0.025V and then finally to 0.5 

V was to discover the correlation between the potential holding and degree of recovery. 

The potential limit to which the scan can be performed cathodically should be a voltage 

between 1.05 and 1.2 V. After 1.2 V, the Pt catalyst starts getting oxidized. 

Figure 3.6 shows the effect of the holds at higher potential and the partial scans on 

the Hupd region as well as the Pt-O reduction region. As shown in figures 3.6 and 3.7, 

after the first part of potential holdings at higher voltages, the ECA loss decreased from 
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62% to 56%, from 52% to 38%, and from 12% to 8% for Ultramid®, EMS Grivory®, 

and Ryton®, respectively. These findings suggest that the potential holding helped 

recover the lost ECA to some extent. Further recovery was possible for each of the 

contaminated electrodes by simply cycling the WE to 1.05 V. Full recovery was observed 

in the case of Ryton®. Only partial recovery to 41% and 25% of initial ECA was possible 

for Ultramid® and EMS Grivory®, respectively. 

This step-wise process (figure 3.6 and 3.7) is an efficient way to recover. It helped 

determine the potential at which recovery was most efficient. It also provided insight into 

the process of recovery. Since the properties of the contaminant molecules would be 

unknown most of the time, any electrochemical oxidation or reduction process undergone 

by the molecules during recovery can be captured from the current recorded during the 

holds. Earlier studies has shown that increased reduction current in the Hupd region close 

to 0V resulted from cycling to higher potential (72). So, in presence of contaminants, the 

same outcome can be expected by the removal of any contaminant species from the Pt 

sites. 

Figure 3.8 demonstrates that charges increased with higher potential holds. These 

findings indicate a gradual recovery process (after contamination with leachates). The 

charges were always positive which suggested ongoing oxidation process during the 

holding at higher potentials. This oxidation facilitated recovery of the lost ECA among all 

the potential holds. Charges recorded during 1.2 V hold were highest among all the 

charges supporting the hypothesis that higher hold potential leads to higher recovery. For 

Ryton®, the charge passed during 0.75 V hold was more compared to the other two 

leachates indicating the higher of recovery at lower potential since Ryton® was a clean 
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material. For Ultramid® and EMS Grivory®, the charge was higher during hold at 1.2 V 

indicating difficulty of oxidizing the contaminant molecule at lower potential and need of 

holding the WE at a higher potential for higher recovery. 

Figure 3.9 shows the final recovery CV after both potential holding and cycling. 

The recovery CV for Ryton® showed complete recovery while the recovery from 

contamination with Ultramid® and EMS Grivory® was partial. Therefore, only a fraction 

of the adsorbed Ultramid® and EMS Grivory® were completely oxidized and desorbed 

from the Pt sites leading to a partial recovery. 

3.3.5. Part II. Experiments with organic compound to determine the impact on ECA 

and ORR of Pt/C catalyst 

The leachates from the BOP materials can contain a variety of organic and 

inorganic materials. So, longer time was needed for the contaminants to come to 

equilibrium with the Pt sites. But since caprolactam was injected in directly from the 

10000 ppm of caprolactam solution, there were no other impurities present. In the 

following sections, it will be shown that the time taken by caprolactam molecules to 

come to equilibrium with the Pt sites was comparatively much less. Accordingly, the 

experiments were designed with shorter hold times after injecting caprolactam. 

3.3.6. Baseline experiments without any contaminants to benchmark ECA 

As described in section 3.3.2, it is important to measure the loss in ECA due to 

potential cycling before adding any contaminants. These control experiments were 

performed before any experiments with caprolactam. The control experiments consisted 

of a baseline set of CV and ORR and three additional sets of the same corresponding to 
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sequential addition of contaminant. Note that contaminants were not added in the control 

experiments. The procedure for each set was described in section 2.5.2. Again, the set 

consisted of a partial CV, followed by an ORR LSV, followed by another partial CV. To 

report the change in ECA for each set, a normalized ECA was obtained by dividing each 

set’s ECA by the baseline ECA (performed at the beginning of the experiment). The 

results of the control experiment are shown in figure 11 (points with * symbol) for four 

replicates (four electrodes) with error bars. Thus, it was observed that the ECA loss was 

2%, 8% and 16% at the end of three steps. This may be due to adsorption of sub-surface 

oxygen that collected on the electrode during previous cycling or adsorption of anions 

from the electrolyte. Therefore, ECA depends to some extent on the potential cycling 

history as well as on the accumulation of adsorbate species from the electrolyte (72). The 

available ECSA of the electrode before and after ORR was calculated but no substantial 

change was observed between the two values. The electrochemical surface area (ECSA 

or ECA) was calculated from the area under the Hupd region using equation 1. 

ECA=
IdE
ν

210 *LPt*Ageo
                                                                        (1) 

The charge of full coverage for clean Pt is 210 μCcm-2. It is used as the 

conversion factor to calculate electrochemical surface area from the charge obtained from 

integrating the current (I) over the potential range (dE) under the Hupd region. 

3.3.7. Benchmarking the ORR catalyst activity with TKK Pt/C catalysts 

Recent studies have reported the guidelines for measuring ORR activities under 

different experimental conditions using adsorbing and non-adsorbing electrolytes (73-76). 

The catalysts evaluated in this study were commercially available TEC10E50E (high 
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surface area carbon or HSC, 46% Pt on C) and TEC10V50E (46% Pt on Vulcan carbon 

or VC XC-72C) manufactured by TKK, Japan. Both catalysts are carbon (graphite) based 

with 30 to 40 nm diameter carbon particles agglomerated to form a larger primary 

structure. The comparison of two catalysts is not a simple process and can only be done 

by estimating and comparing the ORR activities (77). The TEC10E50E is a higher 

surface area (75-80 m2gPt
-1 (5)) carbon support catalyst compared to TEC10V50E (65-70 

m2gPt
-1, (73)) but exhibits poorer mass activities than the later. The higher surface area 

resulted from the larger pore volume in the TEC10E50E than TEC10V50E. The higher 

the pore volume, chances are the contaminant particle may enter the pores complicating 

the diffusion-adsorption processes on Pt sites. So, TEC10V50E was chosen as the 

catalyst for all the experiments over TEC10E50E, owing to its simple structure, low pore 

volume and high Pt surface area (m2gPt
-1). 

Here electrodes were prepared with different batches of inks to verify the 

reproducibility of the catalyst preparation technique. The ECA and ORR activities of 

Pt/VC were benchmarked using the electrodes prepared from seven batches of inks. After 

the seven electrodes were prepared, they were run in clean electrolytes each time at room 

temperature. The average ECA was ca.66 m2gPt
-1, which is in agreement with earlier 

studies (73). The average mass and area specific activities were 231 mAmgPt
-1 and 351 

µAcmPt
2 . 

To calculate specific activity (is) and mass activity (im), the diffusion limiting 

current (iL) and the current at 0.9 V were recorded. The potential at which the current is 
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to be measured for calculating specific activities was determined by a simple relation – 

the current at 0.9 V has to be within 10% to 80% of the limiting current (77). The limiting 

current calculated using equation 2 was corrected for the partial pressure of oxygen 

which in Denver was 83 kPa and divided by the geometric electrode area 0.196 cm2 to 

calculate the limiting current density as given in equation 2. 

ilim =	 
i lim 

electrode area 
 *

101

83
		                                          (2) 

All data were corrected for the resistance in the electrolyte. Specific activity (is, 

μA/cm2
Pt) and mass activity (im, mAmgPt

-1), after the corrections for mass transport, 

electrolyte resistance, and partial pressure of oxygen, are given by equations 3 and 4: 

Mass transport free current ik is given by, 

ik = (ilim) (i)/( ilim-i)                                                              (3) 

where, i lim was the limiting current and i was the current at 0.9 V. 

Mass specific activity or current can be calculated from equation 4, 

im =
ik*1.3*103

loading*geometric area of electrode
                                 (4) 

1.3 was the correction factor to account for the combined effect of low partial 

pressure of gases in Denver. Kinetic and thermodynamic aspects of lower partial 

pressures of H2 and O2 gases contribute to estimating the correction factor at Denver to be 

1.3 (78). 
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The normalized activity follows the same trend as available ECA. The normalized 

mass activity graph follows the trend as ECA. The loss in mass activity for the control 

experiment (without contaminant) was around 4%, 6% and 11% for the three steps as 

given in table 3.2. 

3.3.8. Determining the equilibrium time required for organic compounds 

To characterize the time needed for molecules of caprolactam to reach 

equilibrium with the Pt catalyst, 1.36 ml of 1x10-3 M caprolactam was injected at 1.05 V 

(after 1.25 cycles, one full cycle then from 0.4 → 1.05 V) after conditioning the electrode 

as described in section 2.3. During this characterization, the WE was cycled between 0 

and 1.05 V at a scan rate of 100 mV/s so that a complete scan was recorded in 20s. It took 

0.7 cycles to observe the peaks due to contamination with caprolactam. After adding 

caprolactam, the first contamination peak was observed at 0.25 V (anodic). Thus, 12 s 

was recorded for the caprolactam molecules to reach Pt (figure 10). It took 12-13 cycles 

for the contaminant molecules to attain equilibrium with the Pt sites on the WE, which 

was approximately 240 s from the beginning of the contamination. Therefore, in the 

consecutive experiments quantifying the ECA and ORR loss due to addition of 

caprolactam, the WE was held for 300 s before CV scans. 

3.3.9. Example of contamination effects from organic compounds on CV and ORR 

The effect of contamination from the leachates was reported in the previous 

section of this paper. Experiments conducted in the following part attempt to assess the 

role of an organic compound found in the leachate of structural plastics that may be used 

in PEMFC. Since caprolactam, or dimer of caprolactam, was identified in the leachates 
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described in the previous part, it was chosen as the “model” compound for further 

contamination experiments. 

After establishing a baseline for CV and ORR (section 3.2.5) caprolactam was 

injected in the clean electrolyte to achieve 1x10-3, 5x10-3 and 2x10-2 M concentrations in 

the RDE cell. 

Caprolactam adsorbed on the Pt sites (figures 3.11 and 3.12) and showed 

distinctive poisoning behavior involving decrease in Hupd region to 81%, 76% and 74% of 

the initial value for the concentrations of caprolactam 1 mM, 5 mM and 20 mM. The “a” 

and “b” peaks at 0.22 V is due to proton adsorption/H2 desorption on Pt (100). The black 

arrows in the Hupd region indicate the loss in ECA and its subsequent recovery. 

The oxygen reduction reaction is known to be affected by contaminants present in 

air or fuel in a PEMFC (17). Some recent studies also suggest that irreversible poisoning 

characteristics of organic compounds from coolants (30) and additives (61) used in a 

PEMFC can inhibit the ORR activities. The ORR baseline was established in a clean 

electrolyte (section 3.2.5.2.). As caprolactam was injected in the electrolyte, the 

corresponding polarization curves showed (i) decreased diffusion limiting current and (ii) 

shift in current at 0.9 V. These two phenomena can indicate poisoning of the catalyst, 

adsorption of caprolactam on the Pt sites required for O-O bond breaking (colored lines 

in figure 3.12) as well as absorption on ionomer. 

The mass transport limiting current decreased to 87, 85 and 78% of the initial 

value (table 3.3 and figure 3.13) whereas the ECA decreased to 81%, 76% and 74% i.e. 

the limiting currents after addition of contamination did not decrease in same extentand 
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proved to be beneficial for the ORR of Pt. Whereas, the available current at 0.9 V (80%, 

76% and 74%) after adding caprolactam was found to be proportional to available ECA 

at that step. So no additional current loss (due to absorption on ionomer) effect was 

observed in case of caprolactam contamination. 

The contamination of caprolactam suppresses ORR currents of Pt/C. The best way 

to quantify the ORR activities loss is by calculating the mass activity of the electrode. 

The mass activities were first calculated for each of the three steps of the contamination 

in a clean electrolyte without adding any contamination anytime during the experiments. 

These mass activities in the control experiment provided a perspective of the expected 

values of the mass activities at each step. 

The baseline mass activities during the control experiments were close to 240 

mAmg  (figure 3.14). In the next set of experiments, where caprolactam was gradually 

added in three steps, the mass activities decreased to 125 mAmg  as shown in figure 18. 

This is almost 51% of the value of mass activity at the beginning of the test. Therefore, 

49% of mass activity was lost due to contamination. In an attempt to restore the lost mass 

activity, the electrode was rinsed in DI water and was moved into a second set of cell 

containing fresh electrolyte saturated with O2. In that electrolyte, linear sweep 

voltammetry was performed and the recovered mass activity was 76% of the initial value. 

3.4. Conclusions 

This study summarizes comprehensive and sequential testing protocols to 

measure the impact of liquid phase contamination from BOP materials on Pt/C catalyst 
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used in a PEMFC. The protocols also included mitigating strategies that was partially 

successful in reversing the effect of contamination for some leachates. 

The results were analyzed to reveal the following: 

 To allow the contaminant molecules to reach equilibrium with the Pt sites, the 

WE electrode should be held at a potential less than the oxidation potential of 

the contaminants before performing a CV to measure contamination effects. 

This potential was chosen to be 0.4 V rather than the open circuit potential 

since it minimizes the loss of ECA. 

 Due to time dependant nature of contamination, the ECA loss reached 

equilibrium with Pt sites after ~40 min although the majority of the 

contamination effect was observed in the first 10 min. 

 From the quantitative analyses of ECA loss, it can be concluded that the 

contamination was more pronounced in the case of polyamide 6,6 (Ultramid® 

and EMS Grivory®) than polyphynelene sulfide (Ryton®). Even though all 

three of them are off-the-shelf BOP materials, the Ultramid® and EMS 

Grivory®) showed greater impact in poisoning the catalyst than Ryton®. 

 The recovery strategies were more effective for Ryton® where full recovery 

was observed , whereas Ultramid® and EMS Grivory® contamination effects 

were partially recoverable, which mirrored the contamination effect of those 

three compounds. 

In the second part (section 3.3.4 to 3.3.7), experiments were performed to report 

the contamination from the organic contaminant (caprolactam) detected in the leachate of 
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the BOP material Ultramid®. Caprolactam showed poisoning behavior comprising of 

loss of ECA and ORR currents and activities. Changing caprolactam concentration from 

1 to 20 mM the ECA changed from 80 to 74%. The comparison of ORR activities 

between an uncontaminated and a contaminated (with caprolactam) electrode revealed up 

to 65% loss in mass activity of the catalyst, which was partially recovered at the end. 

ORR data showed no additional contamination effect resulting from absorption of 

caprolactam on ionomer. Also the contamination was recoverable by rinsing the electrode 

with DI water and cycling the electrode at higher potential. 

Care must be exercised before measuring the ECA because the surface area of the 

thin film decreases with time and/or voltage cycling. So, it is imperative to benchmark 

several electrodes to establish a range of reproducible ECAs and ORR activities with the 

catalyst before assessing the effect of contaminants on it. 

The data obtained in this study on the poisoning behavior of the structural 

materials may provide guidelines to the manufacturers of fuel cell with the specifications 

for concentration of the materials that can be safely used. 
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Table 3.1. Summary of comparison of ECA loss due to CV cycles and contamination 
(Ultramid®, EMS Grivory® and Ryton®) on Pt/C catalyst as evaluated in this paper 

 

time, s 

blank Ultramid® Ryton® EMS Grivory® 

% ECA 

loss 

% ECA 

loss 

∆ 

change 

% ECA 

loss 

∆ 

change 

% ECA 

loss 

∆ 

change

750 3 33 30 5 2 22 19 

1500 8 57 49 10 2 34 26 

2250 11 66 55 17 6 41 30 

3000 14 72 58 27 13 64 50 

3750 19 80 61 32 13 71 52 

4500 23 85 62 35 12 75 52 
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Table 3.2. Summary of the average and standard deviation of mass activities during 
control experiments performed in three steps and after contaminating the electrolyte with 
1, 5 and 20 mM of caprolactam corresponding to step 1, 2 and 3 in a different set of 
experiments (refer to figure 3.11 for the respective ECAs). 

 

ORR activities after 
contamination 

Normalized mass specific 
activity (%) 

Normalized mass specific 
activity (%) 

control caprolactam 

Step 1 95.9 ± 3.0 51.2 

Step 2 93.9 ± 3.6 48.4 
Step 3 88.6 ± 2.6 35.4 

recovery - 75.0 
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Table 3.3. Summary of ECA loss and ORR currents before and after adding 
contaminants. 

 

  

ilim (ic/ip)lim i0.9V (ic/ip)0.9V ECA 
Available 
ECA %

ionomer
effect0.9V

ionomer
effectlim

mA/cm2 % mA/cm2 % m2/gPt % % %

1E-3 M 5.2 87 2.0 80 54 81 -1 -3

5E-3 M 5.1 85 1.9 76 51 76 0 -9

2E-2 M 4.7 78 1.8 74 50 74 0 -4

recovery 5.8 96 2.3 92 62 92 0 -4
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Figure 3.1. Schematic of the experimental protocol to investigate the impact of 
the organic contaminants found in the DI water soak of the materials used in a 
PEMFC. The loss of ECA and ORR activity of Pt/VC were measured using three 
electrodes TF-RDE apparatus at room temperature.  
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Figure 3.2. Figure showing the initial cyclic voltammetry in 0.1 M 
HClO4 at room temperature. Conditions: scanned at 20mVs-1 without 
any rotation of the electrode in a well purged (with inert gas) clean 
electrolyte from 0.to 1.2 V after conditioning. The CV shows distinct 
peaks at 0.1 V cathodical (hydrogen adsorption). 
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Figure 3.3. Schematic of the 
caprolactam molecule showing 
an aliphatic closed chain organic 
compound with =O and –HN 
group attached the ring. 
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Figure 3.4. The loss in ECA after to holding the WE at 0.4 
V and OCV potential (0.9V) from the initial ECA in clean 
0.1 M HClO4, at room temperature recorded at intervals of 5, 
10 and 20 minutes. 
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Figure 3.5. ECA loss due to contamination from the leachates at room 
temperature, in 0.1 M HClO4.  
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Figure 3.6. Example of the recovery of contaminated (Ultramid®) 
electrode at the end of potential holding at 0.75 V, 0.85 V, 0.95 V, 
1.05 V in a clean electrolyte (0.1 M HClO4) purged with N2. 
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Figure 3.7. The recovery of lost ECA due to potential 
holding and potential cycling. The left side of the figure 
shows the recovery characteristic of potential holding on the 
lost ECA due to contamination from the fabrication plastics 
used in a fuel cell (Ultramid®, Ryton®) and DI water. The 
right side shows the further impact of potential cycling to a 
higher voltage (10 full CV cycles) on recovering the lost 
ECA after potential holding. 
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Figure 3.8. Charge recorded during 5 minutes holds at the time of 
recovery in a clean electrolyte after rinsing the WE in DI water. The 
holds were performed at 0.75 (blue), 0.85 (red), 0.95 (green) and 
1.05 (violet) V. Legend: (…….. EMS Grivory, ¬¬—— Ultramid, – 
·– Ryton) 
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Figure 3.9. The baseline is the initial CV scans before adding any 
contaminants (black solid line). After the electrodes were contaminated with 
two leachates and recovered at higher potential, the CV scans after recovery 
was shown in red line for EMS Grivory®, blue line for Ultramid® and green 
line for Ryton®. 
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Figure 3.10. Cyclic voltammogram to determine time needed for 
caprolactam to adsorb on Pt sites. 1x10-3 M caprolactam was added 
to the electrolyte after conditioning of electrode at 1.05 V (a) and no 
change was observed in the Pt-O reduction region. In the first cycle 
(red line) the first peak (b) was observed at 0.3 V and the Hupd 
region (c) stayed the same. Then in the 15th cycle after the addition 
of caprolactam (green line), area under Pt-O region (d) as well as 
Hupd region (e) decreased. The arrows show the direction of cyclic 
voltammetry. 
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Figure 3.11. The loss in ECA during the control 
experiment (▲, ∆) in the clean electrolyte (0.1 M 
HClO4) and after injecting caprolactam (■, □). The y 
axis denotes normalized ECA. Sets 1 to 3 denote the 
three steps after contamination, which for caprolactam 
were 1, 5 and 20 mM. Legend: (open symbols: available 
ECA, solid symbols: loss in ECA) 
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Figure 3.12. The effect of caprolactam on partial CV scans at room 
temperature. Conditions: scanned at 20 mVs-1 without any rotation of 
the electrode in a well purged (with inert gas) clean electrolyte. 
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Figure 3.13. ORR polarization curves for Pt/VC in 0.1 M 
perchlric acid electrolyte: initial or baseline ORR (black solid 
line), with 1x10-3 M caprolactam (red solid line), with 5x10-3 M 
caprolactam (green solid line), with 2x10-2 M caprolactam 
(violet solid line). 
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Chapter 4. Screening of assembly aids using TF-RDE method 

In this chapter the effect of off-the-shelf adhesives and lubricants (assembly aids) 

that may be used in PEM (proton exchange membrane) fuel cells affects the performance 

of Pt catalyst adversely. The impact on Pt, which is widely used in PEMFC was 

investigated using thin-film rotating disk (TF-RDE) method. The adhesives leach out in 

the PEMFC electrode and reduce electrochemical surface area (ECA) and oxygen 

reduction reaction (ORR) activities of platinum based catalysts leading to loss of 

performance. In this study liquid phase contamination effect on platinum supported on 

Vulcan carbon electro catalyst was shown using cyclic voltammetry and linear sweep 

voltammetry approaches. The effects of the leachant were compared to the effects of the 

organic compound present in it using rotating disk electrode (RDE) in 0.1 M perchloric 

acid. The loss in ECA and ORR activities (mass activities, mA/mgPt and specific 

activities, µA/cm2Pt) are compared at the beginning of the test and after addition of 

different dosage of contamination. 

The additional information on the methodology and background studies can be 

found in appendices D, E, F and G. 

4.1. Introduction 

Polymer electrolyte membrane fuel cell (PEMFC) is one of the cleanest sources 

among the available renewable technologies to be used in car industries. Success of fuel 

cell based vehicles depend on the performance of the electrocatalysts used in them, which 
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are widely known to be susceptible to various contaminants (15, 41, 79, 80) (air borne 

and liquid phase) resulting in poor performance and durability. When the contaminants 

reach the catalyst layer, they adsorb on the Pt sites preventing them to participate in 

oxygen reduction reaction (O2+ 4H++ 4e- → 2H2O). 

The ORR reaction is usually the one of the most inhibiting processes for 

developing high performance electrocatalyst for fuel cell vehicles (81). So for the 

development of Pt electrocatalyst, understanding the process of contamination at the 

catalyst surface is necessary. The contamination of Pt electrode is a complex process, 

since the contaminants can modify the intrinsic catalyst properties. The common sources 

of contamination are air (cathode), fuel (anode), components of fuel cell (structural 

plastics, assembly aids, coolants, gaskets etc.). While there are many existing studies on 

air contaminants (15, 24, 44, 82) very few literature exists that quantifies and explains the 

contamination originating from the organic compounds used in a fuel cell as structural 

plastics, assembly aids (adhesives lubricants etc.) at the surface of the Pt catalyst. 

Carbon supported Pt or Pt alloy of catalysts are mostly extensively used catalyst 

for low temperature fuel cells for vehicles. Air contaminants like SO2, NH3, CO, CO2, 

H2S etc. (15, 23, 24, 44, 56, 79) adsorb on Pt on cathode side and anode side in a PEMFC. 

While the impurity effect on hydrogen oxidation reaction (HOR) on anode side is well 

understood, the oxygen reduction reaction is still need to be studied with great detail 

since ORR inhibited by contaminants can result in high over potential and loss in fuel cell 

efficiency (44, 58). Therefore it is very important to understand the fundamentals of 

contamination process on Pt/C using ex-situ methods like rotating disk electrode to 

develop commercially viable catalyst with high ORR activities. 
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The performance of a fuel cell is degraded in presence of not only air 

contaminants. The contaminants leached out from the fuel cell stack are detrimental to Pt 

catalyst. The contaminants can leach from anywhere in a fuel cell stack, such as the 

plastics, coolant, gaskets, adhesives and assembly aids (31). 

In situ and ex-situ voltammetric studies have been previously employed for 

studying and removal of adsorbed contaminants such as air contaminants (cathode and 

anode side) like SO2, H2S and CO from the Pt surface in the MEA (16, 56, 63). Recently 

ex-situ studies have revealed the significance for studying the liquid phase contaminant 

originating from commercially available coolant stream as they might contain additives 

which could poison the catalyst (30). 

The off-the –shelf assembly aid materials are being considered by the 

manufacturer and may be used in PEM fuel cells since they possess excellent thermal 

stability and water resistant properties. But after prolonged use the assembly aids leach 

out inside the fuel cell and affects the catalyst performance. To study the effect on 

cathodic ORR due to contamination, these assembly aid materials were tested ex-situ 

using TF-RDE mimicking the same leaching condition. 

Materials selection in this study was based on properties such as exposed surface 

area, utilization and integration in a PEMFC system, cost, and performance implications. 

They may be used for applications in hot and humid conditions such as in fuel cells. In 

this study it is shown that the leachant from adhesive used in a fuel cell stack adsorbs on 

Pt and reduces the available electrochemical surface area and also reduces the mass 
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activity of the catalyst layer. The ex-situ cyclic voltammetry data supports adsorption of 

contaminants on the Pt for the leachant aged for one week at 90°C. 

Thin-film rotating disk electrode (TF-RDE) method was employed in this study to 

understand the fundamentals of oxygen reduction reaction (ORR) (47) and 

electrochemical area loss after injecting the contaminants leached out from the adhesives 

and lubricant. An attempt to recover the ECA and ORR activity loss was also explored in 

this study. RDE measurement technique was chosen for easy isolation of impact on ORR 

activities of the catalyst in presence of contaminants, which was not possible in-situ (in a 

PEMFC). 

Our goal is to provide an increased understanding of fuel cell system 

contaminants and help provide guidance in the implementation, and where necessary, the 

development of system materials that will not lead to undesirable loss of fuel cell 

efficiency due to contamination. In addition to that, studying ORR in presence of those 

contaminants will facilitate development of high performance fuel cell catalysts. 

In this paper, an in-depth study of broad spectrum of assembly aid (lubricant and 

adhesives) materials commonly used in PEMFC has been reported that will benefit the 

fuel cell manufacturers in selecting materials which will limit the contamination and 

develop cost-effective analysis technique of testing system components under 

contamination. It also provides valuable insights on estimating system derived 

contamination on the catalyst as well as the ionomer in a fuel cell. 
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4.2. Experimental 

The off-the-shelf adhesives, sealants, and lubricants (i.e., assembly aids) were 

selected based on their properties and functionalities (i.e., thermally stable and 

chemically resistant) and can be categorized based on their original chemical groups as 

shown in figure 4.1. These assembly aid materials are not specifically designed for fuel 

cell and a wide range of function and applicability. Some of the most important 

characteristics of these adhesives, lubricants, and thread-locks are water resistibility and 

superior stability at elevated temperature. Although the materials were manufactured 

from same parent compounds and have same functional groups, the manufacturer added 

additives residue (solvent, reactant residues, anti-oxidants, flame retardants etc.) 

segregate them into different grades. 

Data for the 19 assembly aids shown in Figure 1 can be found in (70) and six (6) 

of these (shown in Table 4.1) were selected (one from each group except the urethane 

where two were selected) for this paper to illustrate the contamination phenomena of 

ECA loss and the resulting changes in ORR performance as characterized by limiting 

current density, the Tafel slope, and kinetic current density. The results of the screening 

allow for categorization of the aids based on contamination and reversibility behavior. 

Figure 4.2 shows that there were three essential parts of the experimental 

procedure: baseline, contamination, and recovery. Each electrode was subjected to the 

baseline first, followed by the contamination part, and finished with the recovery part.  In 

each part, the ECA and ORR activities were measured. All experiments were performed 

at room temperature in 0.1M HClO4 using a TF-RDE method (Ref dissertation). The 

details of experimental procedure including electrode preparation and conditioning were 
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reported in (59, 70). The contamination part was repeated three times for three different 

concentrations of the leachate. Since kinetics data were extracted from the ORR 

polarization curves, the background of ORR was recorded in N2 gas saturated electrolyte. 

For the baseline part, thin film electrodes were prepared as described in (59, 70) 

and mass activities were calculated and used to ensure quality of the electrode in terms of 

reproducibility of the catalysts. Conditioning involved 100 cycles from 0.025 to 1.2 V at 

100 mV/s after a 20 min N2 purge while the TF-RDE was rotated at 2500 rpm. The full 

baseline CV was obtained from three cycles between 0.025 and 1.05V at 20 mV/s under a 

N2 blanket with no rotation. This full baseline allows calculation of the ECA according to 

typical procedures reported in 16, 17. In addition a partial baseline CV was obtained from 

three cycles between 0.025 and 0.50 V at 20 mV/s under a N2 blanket with no rotation. 

Again the ECA was calculated and compared with the ECA from the full baseline CV. 

These two ECAs were within ±3% of each other with smaller ECA consistent with the 

fact that partial scans do not go higher up to the potential where PtO can be formed. Note 

the partial scan was used to be consistent need to limit the potential range for the 

contaminated ECA. Next, the WE was polarized at 0.4V for 7 min while purging with O2 

and rotating at 2500 rpm. Hydrodynamic voltammetry for the ORR current measurement 

was conducted by recording linear sweep voltammetry at 20 mVs-1 in an O2 blanketing 

environment on the electrolyte and rotating at a speed of 1600 rpm. Finally, the 

electrolyte was saturated by sparging N2 for 7 min then a background ORR scan was 

obtained in N2 saturated electrolyte from -0.01 to 1.0 V at 20 mVs-1 while rotating at 

1600 rpm. The sweep rate and rotation speed were the same as for the N2 baseline. The 
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background was later subtracted from the ORR LSVs to correct for the pseudo capacity 

currents. 

For the contamination part of figure 2 the initial leachate solution of known TOC 

concentration was 1.8 μM on a carbon basis which was added with a pipette directly to 

the electrolyte while purging the RDE cell with N2 and while holding the working 

electrode at 0.4 V (to avoid any electrochemical change of the contaminant before it 

reached the Pt sites) and rotating at 2500 rpm. Then the ECA was measured from the 

cyclic voltammograms (full and partial, performed same way as described above for the 

baseline part). Next, the WE at 0.4V during a 7 min urge of O2 during rotation at 2500 

rpm followed by recording of linear sweep voltammetry (ORR current) at 20 mVs-1 with 

O2 blanketing on the electrolyte and rotating at a speed of 1600 rpm. Note that the 

electrolyte was saturated by sparging N2 for 7 min then a background ORR scan was 

obtained in N2 saturated electrolyte from -0.01 to 1.0 V at 20 mVs-1 while rotating at 

1600 rpm.  The linear sweep voltammetry in N2 is measured to subtract the background 

to obtain kinetic data (Tafel slope). Then the required volume of leachate was added to 

the 1.8 μM contaminated electrolyte to achieve 18 and 180 μM carbon concentration and 

the contamination part was repeated. 

Recovery part includes the potentiostatic hold at higher potentials followed by 

potential cycles from the holding potential (0.75 V, 0.85 V, 0.95 and 1.05 V) to low 

potential (0 V) finally to 0.5 V. The partial CVs allowed calculating ECA after each hold, 

presenting the % of ECA recovered due to the holds. Finally recovery CV (3 cycles of 

full CVs - 0.025 V to 1.05 V at 20mVs-1) and ORR (-0.01 to 1.0 V at 20mVs-1at 1600 

rpm) was performed using the same procedure as described in the baseline section. The 
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linear sweep voltammetry in N2 is measured as the background to obtain kinetic data 

(Tafel slope) after recovery. 

The contaminant solutions for the experiments were prepared by spreading the 

paste material on PTFE strips with the volume to surface area ratio of 150 cm-1, then aged 

at 900C (close to fuel cell operating temperature) in DI water for one week inside an air 

tight PTFE bottles. The aging process at high temperature facilitates the organic 

compositions of the adhesive to leach out in the water. The water was decanted and 

analyzed for total organic carbon (Thermo Scientific), solution conductivity (Thermo 

Scientific) and pH. It was also subjected to GCMS, IC (Dionex ICS-90 Ion 

Chromatography System) and ICP-OES (Perkin Elmer Optima 5300 DV) to qualitatively 

detect the organic and inorganic compositions present in it. In GCMS the most detectable 

peaks are presented in table 4.1. 

A material is selected from each group to demonstrate loss in ECA and effect on 

ORR activities on Pt/C catalyst at room temperature using TF-RDE method. 

4.3. Results and discussions 

4.3.1. Characterization of the leachate using GCMS, TOC, ICP 

The ECA and ORR losses were attributed to the functional groups adsorption on 

Pt catalyst or absorption on ionomer. The TOC and the organic groups identified in the 

leachates for the six materials as determined by GCMS are listed in table 4.1. The 

concentration of organic carbon (given by TOC, ppm) in the leachates tested were as low 

as 10 ppm for Krytox® (fluorocarbon lubricant) and as high as 1695 ppm for Bond It 

(epoxy adhesive) leachate. To study the effect of those leachates the volume added to the 



www.manaraa.com

96 

rotating disk electrode cell, were adjusted depending on the level of TOC so that the final 

concentration of carbon in the electrolyte from the leachate equaled to 1.8 μM, 18 μM 

and 180 μM. The cations identified in the leachates using ICP-OES for the six materials 

are listed in table 4.2. 

4.3.2. Determining time required for the organic contaminant molecule to reach Pt 

sites 

The effect of contamination was observed immediately after adding the 

contamination at 1.05V. As the CV proceeded cathodically a noticeable decrease in Pt-O 

reduction region. The first cycle (in red) shows decrease in Hupd region (H+ + e- ↔ Hupd) 

and for the case of Loctite®39916 and the green lines show the gradual decrease in ECA 

which finally comes to equilibrium after 12-13 cycles (figure 4.3). 

The TOC of Loctite® 39916 was calculated to be 260 ppm. The solution was 

injected at 1.05 V after first 10 cycles and was scanned cathodically. The effect is seen 

immediately in the first cycle (red line) for both cases. It took ca. 8 cycles for the CV to 

come to a steady state. Therefore it took 20.5*8= 164s or over 3 minutes for the 

molecules to reach catalyst surface and adsorb on (block) the Pt sites. 

4.3.3. Screening of BOP assembly aids 

The screening was based on the contamination and reversibility of contamination 

– as depicted in the figure 4.4 were categorized as clean (green bucket), contaminates but 

recovers and contaminates but doesn’t recover. 

Due to potential cycling, the initial electrochemical surface area decreases. The 

initial ECA is denoted by first point on the graph. The ECAs are normalized by baseline 



www.manaraa.com

97 

ECA. The cyclic voltammetries and linear sweep voltammetries were repeated three 

times to mimic the addition of contaminants in three steps. The ECA 2, 3, and 4 were 

performed after break in and baseline to measure the change in available ECA. During 

the control experiment, decline in available ECA was observed. It was up to 17% 

(normalized ECA or NECA was 83%, given by the third point in the graph) till the end of 

the experiment. 

This loss in ECA was taken into account while calculating the NECA and ECA 

loss. 

4.3.4. Analysis of ECA and ORR activities after contamination 

4.3.4.1 DupontKrytox 206 (Lubricant) 

The CVs before adding (baseline) and after adding contaminants (at the end of the 

experiments) are shown in figure 4.5. Both limiting current and currents at 0.9 V are very 

close with respective ECAs. Loss due to contamination adsorption on Pt. No loss due to 

contaminants absorbing on ionomer ECA loss is very low. Enough Pt sites available for 

O-O breaking needed for ORR since the ECA loss were negligible. The recovery steps 

were not performed. 

Nothing was detected in the leachates of krytox (table 4.3) which is consistent 

with low contamination effects on Pt catalyst as well as ionomer. So this material is 

concluded to be a clean material based on the screening criteria. 
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4.3.4.2 3M silicone 8664 (assembly aid) 

The figure 4.6 shows the cyclic voltammogram response (under Hupd region) and 

the currents from oxygen reduction reactions under clean, contaminated and recovery 

conditions. 

Three organic compounds were identified in 3M silicone leachate by GCMS (83) 

2-(2-ethoxyethoxy)ethanol, 2-(2-ethoxyethoxy)ethanol acetate and benzyl alcohol The 

structures of the functional groups are given in figure 4.7. The COO- (carboxylate) group, 

OH- (hydroxyl) group and benzene ring adsorb on Pt and decrease the ECA. But the ECA 

loss was somewhat recoverable, since the aliphatic groups oxidized and desorbed from 

the Pt sites at higher potential during recovery process. 

The ICP results showed very low (11.5 ppm) metal ions (Li, K, Si etc) 

concentration in the leachate as supported by the ionomer contamination data (table 4.4).  

4.3.4.3 Henkel Loctite 39916 

Three organic compounds were identified in Loctite 39916 leachate by GCMS 

(83) –methyl benzene diamine (MBDA), 4-methylbenzensulfonamide (4MBSA) and 

Butyric acid N’-m-tolyl-hydrazine. The structures of the functional groups are given in 

figure 4.9. Loctite 39916 is a polyurethane adhesive, synthesized through polymerization 

between monomers of a 2,4 and 2,6 toluene diisocyante and a polyol through a catalyst. 

When trapped residual monomer from the synthesis reaction leached into solution at 

90°C, which was later hydrolyzed to form methyl benzenediamine, the species identified 

via GCMS in leachates. 4-methylbenzensulfonamide comes through additive added to the 

adhesive for water scavenging. 
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The ICP results showed very high total ICP count (117 ppm) with significant 

amount of various metal cations (Ca) and non-metals (S) present in the leachate. The 

organic functional groups along with free or bound sulfur adsorb on Pt to decrease the 

ECA upto 56% at 180 μM carbon concentration. The ICP-MS data showed high but 

reversible ionomer contamination as supported by the ionomer contamination data. At 

high concentration of loctite 39916 leachate, the ionomer contamination was as high as 

27%, which recovered to 2% (table 4.5). 

4.3.4.4 Other assembly aids 

Other assembly aids tested were 4000 fast cure white, loctite 567, bond it b 45 

4000 fast cure white (urethane) 

The ICP results showed high (109 ppm) metal ions (Zn, K etc). The ICP-MS data 

showed high ionomer contamination as supported by the ICP-MS data. 

Three organic compounds were identified in the leachate of 4000 fast cure white 

by GCMS –Ethanol, 2-(2-ethoxyethoxy), Ethanol, 2-(2-ethoxyethoxy)- acetate, Benzyl 

Alcohol, Methyl-Benzenediamine. The structures of the functional groups are given in 

figure 4.11. 

In addition to the metal ions the –NH2 group from the methyl benzenediamine 

gets protonated and forms NH3
+ which attacks the ionomer. Therefore the additional 

ionomer effect observed during the ORR (current at 0.9 V) was attributed to both the 

metal cations in the leachate as well as the NH3
+ from the aromatic organic compound. 

Due to the strong affinity of Zn2+ and NH3
+ towards the ionomer the ionomer effect was 



www.manaraa.com

100 

only partially recoverable. Also this was the only leachate to show partially recoverable 

ionomer effect due to the combined effects of metal ions and NH3
+ from the leachate. 

Loctite 567 (acrylic) 

Three organic compounds were identified in the leachate of loctite 567 by GCMS 

– Ethanol, 2,2'-[oxybis(2,1-ethanediyloxy)]bis-, Pentaethylene glycol, PEG 

dimethacrylate. The structures of the functional groups are given in figure 12. All these 

organics are result of dissociation of Polyethylene Glycols [PEG’s] which act as 

emulsifiers, plasticizers, water soluble lubricants, solvents, and dispensing agents. All 

these three organic contain essentially same functional groups and they affect the Pt same 

way. 

The ICP results showed total ICP of 74 ppm mostly from S and Si, with low metal 

ions (Na, Zn2+, K+ etc) present. The ICP-MS data showed lowionomer contamination as 

supported by the ORR current data. The structures of the functional groups are given in 

figure 4.12. The COO- and OH- groups from the aliphatic organic compounds adsorbed 

on the Pt sites to decrease the ECA. In addition to the organic groups, S (elemental or in 

the form of -SO2 or –SO3) also adsorbed on Pt, which was also seen in the other loctite 

(39916) adhesive. 

Bond It b45 (epoxy) 

Three organic compounds were identified in the leachate of bond it b45 white by 

GCMS - Benzyl Alcohol, [p or m]-tert-butyl- Phenol, Benzaldehyde. The aromatic 

benzene ring as well as –OH group of benzyl alcohol contributed to the ECA loss due to 

adsorption. The structures of the functional groups are given in figure 4.13. 
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The ICP results showed very low metal ions concentration. The total ICP (71 ppm) 

was due to the presence of Si, which do not absorb or ion-exchange with the ionomer. 

The ICP-MS data showed lowionomer contamination as supported by the ionomer effect 

extracted from the ORR data. 

4.3.5. Contamination effect on oxygen reduction reaction (ORR) activities of Pt/C 

A set of control experiments were performed without adding any contaminants to 

observe any loss in electrochemical surface area due to the running cyclic 

voltammograms on the Pt/C electrode. 

The effect of contamination on ORR of Pt/C is presented in table 4.3 to 4.8. Table 

4.9 draws conclusions based on the ECA and ionomer contamination. Krytox (lubricant) 

did not show any effect on the ORR currents or ECS loss. Rest of the assembly tested 

(adhesives and sealants) showed ECA and/or ionomer contaminations and each of those 

contaminations was either entirely recoverable or partially recoverable (table 4.9) 

4.3.6. Tafel slopes 

The Tafel slopes were calculated at high potential for the purpose of comparison 

between initial clean and contaminated electrolyte. The electrode potential plays an 

important role in changing the Pt surface structure in the presence of O2, due to the mixed 

potential. At higher potentials (> 0.8 V), the electrode surface is a mixture of Pt and PtO, 

while at lower potentials, the Pt surface is pure Pt. Thus, the kinetics of O2 reduction on 

Pt is not expected to be the same in different potential ranges. Figures 4.14-4.17 showed 

the two Tafel slopes observed for ORR on a Pt electrode surface. At a low current density 

range (high potential), a Tafel slope of 60 mV/dec was obtained. At a high current 
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density range (low potential), a value of 120 mV/dec was observed. The difference in 

Tafel slope indicates that the mechanism on a Pt/PtO surface is different from that on a 

pure Pt surface. On a Pt/PtO surface, the rate determining step is a pseudo 2-electron 

procedure, which gives a Tafel slope of 60 mV/decade. However, on a pure Pt surface, 

the first electron transfer is the rate determining step, resulting in a Tafel slope of 120 

mV/decade (84). The tafel slope changes were compared after addition of leachates and 

the comparison is given in table 4.11. 

4.4. Conclusions 

This study showed that contaminants leached from adhesives used in PEM fuel 

cell have detrimental effect of ORR activities and ECA. Table 4.9 summarizes the impact 

of leachates on ECA and ORR of the Pt/C catalyst as found in ex-situ RDE studies with 

additional remarks on the recoverability of contaminates ECA or ORR currents. 

 

1. The selection of the materials was based on their adhesive and lubricant 

properties inside the fuel cell. One material from each group of materials was 

selected for ORR studies. 

2. The ECA drop (100 - % normalized ECA) for the loctite 39916 and bond it 

b45 was more than the others. This effect can be attributed to the model 

compounds present in them (p-toluenesesulfonamide, methyl-benzenediamine, 

benzyl alcohol, p-tert benzyl alcohol). The order of ECA loss is loctite 39916 

> bond it b45 > 4000 fast cure white >loctite 567 > 3m silicone 8664 >krytox. 

3. Two fold effects observed on electrode – Pt catalyst and ionomer 

contamination 
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a. Pt and/ or ionomer contamination may or may not be recoverable 

b. Krytox (lubricant, fluro carbon) is clean – no effects on Pt or ionomer 

c. 3m silcone 8664 (silicone) showed recoverable  Pt and ionomer 

contamination 

d. Loctite 39916 (urethane) showed high contamination; low Pt and complete 

ionomer recovery 

e. 4000 fcw (urethane) showed high contamination; low Pt and partial 

ionomer recovery 

f. Loctite 567 showed moderate contamination; high Pt and complete 

ionomer recovery 

g. Bond It B45 showed high contamination; low Pt and no ionomer 

contamination 

h. Urethane group assembly aids showed higher Pt and ionomer 

contamination 

Presence of different organic functional groups and cationic and anionic species 

in the leachates alters the performance characteristics of ORR of Pt. 

This study will help the manufacturer of the assembly aids to select the solvents 

and eliminate any potential source of contamination. 

  



www.manaraa.com

104 

Table 4.1. Organic (aromatic and aliphatic) compounds identified using 
GCMS in the leachates of the assembly aids tested in this paper. 
 

Chemical 

Description 
Name GCMS: Liquids TOC (ppm) 

Urethane 
3M® 4000 fast 

cure white 
A B C D 1280 

Silicone 
3M® 

# 8664 black 
A B C 

 
197 

Urethane Loctite® 39916 E F D 
 

266 

Acrylic 
Loctite® 

# 567 
G H I  750 

Epoxy 
Reltek® Bond-

IT B45 
C J K 

 
1695 

PFAE/PTFE 
Krytox® XHT-

SX 
None Detected 10 

 

A = Ethanol, 2-(2-ethoxyethoxy) 

B = Ethanol, 2-(2-ethoxyethoxy)-acetate 

C = Benzyl Alcohol 

D = Methyl-Benzenediamine 

E = p-toluenesesulfonamide 
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F = Butyric acid N'-m-tolyl-hydrazide 

G = 2-Propenoic acid 

H = 2,2'-[oxybis(2,1-ethanediyloxy)]bis-Ethanol 

I = Diethylene glycol dimethacrylate 

J = [p or m]-tert-butyl- Phenol 

K = Benzaldehyde  
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Table 4.2. Inorganic constituents identified using ICP-MS in the leachates of 
the assembly aids tested in this paper 
 

Chemical 

Description 
Name    

Total ICP 

count 

Urethane 
3M® 4000 fast cure 

white 
Zn K Ca 109 

Silicone 
3M® 

# 8664 black 
K Na  11 

Urethane Loctite® 39916 S Ca  98 

Acrylic 
Loctite® 

# 567 
Na K S 74 

Epoxy Reltek® Bond-IT B45 K Ca P 2.7 

PFAE/PTFE Krytox® XHT-SX -   - 
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Table 4.3. Analysis of current and ECA loss to demonstrate the effect of contamination 
due to addition of Krytox lubricant.Platinum ECSAs and ORR currents were determined 
before and after contamination, for thin films of 46 wt.%Pt/VC, 17.4 μgPt cm−2, 0.1M 
HClO4, 25°C 

 
 

ilim (ic/ip)lim i0.9V (ic/ip)0.9V ECA 
Available 

ECA % 

ionomer 

effect 

 mA/cm2 % mA/cm2 % m2/gPt % % 

Baseline 6 100 2.7 100 67 100 0 

1.8 μM 5.8 97 2.7 97 65 97 0 

18 μM 5.8 96 2.6 95 64 95 0 

180 μM 5.7 95 2.54 95 64 95 0 
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Table 4.4. Analysis of current and ECA loss to demonstrate the effect of 
contamination due to addition of 3M silicone 8664.Platinum ECSAs and ORR 
currents were determined before and after contamination, for thin films of 46 wt. % 
Pt/VC, 17.4 μgPt cm−2, 0.1M HClO4, 25°C 

 

 
ilim (ic/ip)lim i0.9V (ic/ip)0.9V ECA 

Available 

ECA % 

ionomer 

effect0.9V 

 
mA/cm2 % mA/cm2 % m2/gPt % % 

Baseline 6 100 2.6 100 66 100 0 

1.8 µM 5.5 92 2.0 77 48 78 1 

18 µM 5.3 88 1.8 69 42 69 0 

180 µM 4.8 80 1.7 65 39 65 0 

recovery 5.7 95 2.4 92 53 94 2 
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Table 4.5. Analysis of current and ECA loss to demonstrate the effect of 
contamination due to addition of Loctite 39916.Platinum ECSAs and ORR currents 
were determined before and after contamination, for thin films of 46 wt.%Pt/VC, 
17.4 μgPt cm−2, 0.1M HClO4, 25°C 

 

ilim (ic/ip)lim i0.9V (ic/ip)0.9V ECA 
Available 

ECA % 

ionomer 

effect0.9V 

mA/cm2 % mA/cm2 % m2/gPt % % 

baseline 6 100 3 100 66 100 0 

1.8 µM 4.4 73 1.7 57 48 72 15 

18 µM 3.9 65 1.4 47 42 64 17 

180 µM 3.5 58 0.9 30 39 56 26 

recovery 5.0 83 1.9 63 53 63 0 
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Table 4.6. Analysis of current and ECA loss to demonstrate the effect of contamination 
due to addition of 4000 fast cure white. Platinum ECSAs and ORR currents determined 
before and after contamination, for thin films of 46 wt.%Pt/VC, 17.4 μgPt cm−2, 0.1M 
HClO4, 25°C 

 
 

ilim (ic/ip)lim i0.9V (ic/ip)0.9V 
Available 

ECA % 

ionomer 

effect0.9V 

baseline 6.0 100 2.8 100 100 0 

1.8 µM 4.8 80 2.0 73 78 5 

18 µM 4.3 72 1.6 57 70 13 

180 µM 3.7 62 1.2 42 63 21 

recovery 4.4 73 1.5 55 69 14 
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Table 4.7. Analysis of current and ECA loss to demonstrate the effect of contamination 
due to addition of Loctite 567. Platinum ECSAs and ORR currents determined before 
and after contamination, for thin films of 46 wt.%Pt/VC, 17.4 μgPt cm−2, 0.1M HClO4, 
25°C 

 
 

ilim (ic/ip)lim i0.9V (ic/ip)0.9V 
Available 

ECA % 

ionomer 

effect0.9V 

Baseline 6 100 2.7 100 100 0 

1.8 µM 5.27 88 2.3 85 87 2 

18 µM 4.9 82 1.65 61 64 3 

180 µM 4.4 73 1.25 46 50 4 

recovery 5.57 93 2.1 78 81 3 
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Table 4.8. Analysis of current and ECA loss to demonstrate the effect of 
contamination due to addition of Bond it b45. Platinum ECSAs and ORR 
currents determined before and after contamination, for thin films of 46 
wt.%Pt/VC, 17.4 μgPt cm−2, 0.1M HClO4, 25°C 

 
 ilim (ic/ip)lim i0.9V (ic/ip)0.9V Available 

ECA % 

ionomer 

effect 

Baseline 6 100 2.8 100 100 0 

1.8 µM 5.2 87 2.3 80 80 0 

18 µM 4.9 81 1.7 61 62 1 

180 µM 4.5 75 1.6 57 58 1 

recovery 5 83 1.9 68 69 0 
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Table 4.9. Summary and comments on the contamination process by leachates – based on extent of ECA loss during contamination 
(column 3), recovery of ECA (column 4), ionomer contamination (column 5) and recovery of ionomer contamination (column 6) 

 

Name Group 
ECA (Pt) 

contamination 

ECA (Pt) 

contamination 

recovery 

Ionomer 

contamination 

Ionomer 

contamination 

recovery 

Remarks 

Krytox Fluro carbon very low yes no - clean 

3M silicone 8664 silicone moderate yes no - dirty but recoverable 

Loctite 39916 urethane high partial yes yes dirty and not recoverable

4000 fast cure white urethane high partial yes partial dirty and not recoverable

Loctite 567 acrylic moderate yes yes yes dirty but recoverable 

Bond it B45 epoxy high partial no - dirty and not recoverable
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Table 4.10. Analysis of mass activities to demonstrate the effect of contamination due to 
addition of leachates. Platinum ECSAs and ORR currents determined before and after 
contamination, for thin films of 46 wt.%Pt/VC, 17.4 μgPt cm−2, 0.1M HClO4, 25°C 

 

4000 fcw loctite 567 bond it b45 3m silicone  loctite 39916 krytox 

100 100 100 100 100 100 

65 83 75 71 46 99 
49 51 50 69 36 98 
34 36 47 70 20 93 
43 69 55 91 51 - 

  



www.manaraa.com

 

115 

Table 4.11. Tafel slope (in mV/decade) measured from iR-free 
polarization curve at 23°C in 0.1 M perchloric acid at a scan rate of 
20mV/s (range of polarization being -0.01 to 1.0V) with two parts. In the 
higher over potentials (typically above 0.8) it is around -65 to -75 
mV/decade, but in the lower over potential region it is around -118 to -130 
mV/decade for carbon supported Pt 
 

 baseline 1.8μM 18 μM 180 μM recovery 

3Msilicone 8664 67 63 68 70 65 

Loctite 39916 69 72 77 80 75 

400 fast cure white 70 74 76 81 80 

Loctite 567 70 72 78 82 75 

Bond It b45 68 71 73 74 74 
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Figure 4.1. Assembly aids selected for screening based on the 
contamination and recovery characteristics. The assembly aids have 
different groups and the assembly aids highlighted may are presented in 
this paper. 
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Figure 4.2. Schematic of contamination experiments consisting ECA and ORR measurement procedures 
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Figure 4.3. Votammograms showing effect of adding 1.2 ml of Loctite® 
39916 on Pt/C (Vulcan) at room temperature in 0.1 M HClO4, scanned from 
0.025 to 1.05 V 
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Figure 4.4. Contamination criteria: After selecting potential 
materials they were injected in the RDE electrolyte to observe 
the impact on the electrochemical surface area – which 
determined the characteristic of the leachate 
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Figure 4.5. The CV and ORR curves before (baseline) and after adding Krytox leachate 
(1.8 μM, 18 μM, 180 μM). Change in surface coverage by contaminants (loss of ECA 
due to adsorption of contaminant molecules on Pt sites) with CV cycles from 0.025 to 0.5 
V at a scan rate of 20mV/s as measured under the Hupd. 
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Figure 4.6. The CV and ORR curves before (baseline) and after adding 3M silicone 8664 
leachate (1.8 μM, 18 μM, 180 μM). Change in surface coverage by contaminants (loss of 
ECA due to adsorption of contaminant molecules on Pt sites) with CV cycles from 0.025 
to 0.5 V at a scan rate of 20 mV/s as measured under the Hupd. 
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Figure 4.7. Organic functional groups found in leachate of 3M Silicone 8664 using 
GCMS (83) 
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Figure 4.8. The CV and ORR curves before (baseline) and after adding Loctite leachate (1.8 
μM, 18 μM, 180 μM).Change in surface coverage by contaminants (loss of ECA due to 
adsorption of contaminant molecules on Pt sites) with CV cycles from 0.025 to 0.5 V at a scan 
rate of 20 mV/s as measured under the Hupd. 
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Figure 4.9. Organic functional groups found in leachate of Loctite 39916 using GCMS 
(83) 
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Figure 4.10. Changes in available ECA due to effect 
of contamination from the assembly aids 
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Figure 4.11. Organic functional groups found in leachate of 4000 fast cure white using 
GCMS (83) 
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Figure 4.12. Organic functional groups found in the one week soak leachate of Loctite 
567 using GCMS (83) 
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Figure 4.13. Organic functional groups found in the one week soak 
leachate of Bond it b45 using GCMS (83) 
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Figure 4.14. Tafel plots of the log of kinetic currents, for O2 reduction during 
potentiodynamic scans in on Pt/C after adding 3M Silicone 8664. The 
oxidation rate was measured in a flow cell (scan rate 20 mVs−1, electrolyte as 
indicated in the figure). The measurements were initiated at -0.1 V and ended 
at 1.0 V. Tafel slopes corresponding to −60 and −120 mVdec−1 are shown as 
solid lines for comparison. 
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Figure 4.15. Tafel plots of the log of kinetic currents, for O2 reduction 
during potentiodynamic scans in on Pt/C after adding Loctite 39916. The 
oxidation rate was measured in a flow cell (scan rate 20 mVs−1, electrolyte 
as indicated in the figure). The measurements were initiated at -0.1 V and 
ended at 1.0 V. Tafel slopes corresponding to −60 and −120 mVdec−1 are 
shown as solid lines for comparison. 
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Figure 4.16. Tafel plots of the log of kinetic currents, for O2 reduction 
during potentiodynamic scans in on Pt/C after adding 4000 fast cure white. 
The oxidation rate was measured in a flow cell (scan rate 20 mVs−1, 
electrolyte as indicated in the figure). The measurements were initiated at -
0.1 V and ended at 1.0 V. Tafel slopes corresponding to −60 and −120 
mVdec−1 are shown as solid lines for comparison. 
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Figure 4.17. Tafel plots of the log of kinetic currents, for O2 
reduction during potentiodynamic scans in on Pt/C after adding 
Loctite 567. The oxidation rate was measured in a flow cell (scan 
rate 20 mVs−1, electrolyte as indicated in the figure). The 
measurements were initiated at -0.1 V and ended at 1.0 V. Tafel 
slopes corresponding to −60 and −120 mVdec−1 are shown as solid 
lines for comparison. 
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Figure 4.18. Tafel plots of the log of kinetic currents, for O2 reduction 
during potentiodynamic scans in on Pt/C after adding Bond it b45. The 
oxidation rate was measured in a flow cell (scan rate 20 mVs−1, electrolyte 
as indicated in the figure). The measurements were initiated at -0.1 V and 
ended at 1.0 V. Tafel slopes corresponding to −60 and −120 mVdec−1 are 
shown as solid lines for comparison. 
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Chapter 5. Effect of a leachate and its constituents on Pt catalyst 

In this chapter cyclic and linear sweep voltammetry methods were employed to 

show contamination effects on Pt by leachate from a urethane type adhesive that may be 

used in the assembly in PEMFC systems, using thin film rotating disk electrode (TF-RDE) 

method.  TF-RDE  method was employed to compare the extent of contamination with 

three low concentrations of the leachate and the organic constituents and rotating ring 

disk electrode (RRDE) method was used to quantify and compare the oxygen reduction 

reaction (ORR) losses due to the organic (p-toluenesulfonamide) and inorganic (chloride 

ion) constituents detected in the leachate independently and collectively. The first part of 

the study with low concentrations of leachate and organic compounds, quantified the 

ECA and ORR losses of Pt with partial recovery and in the second part of the study, 

effects of inorganic and organic constituents were investigated in the original high 

concentrations as detected in the leachate. For example, with carbon concentrations as 

low as 180 µM (0.02 mM of p-toluenesulfonamide), the ECA loss observed in case of 

leachate and p-toluenesulfonamide were 52% and 58% respectively. But at 1.3 mM 

concentration (equivalent to the original concentration of C detected in the leachate) of p-

toluenesulfonamide, the ECA loss increased to 64%. Peroxide formation was observed 

during the experiments with higher concentrations of the constituents (p-

toluenesulfonamide, chloride ion) indicating an interacting contamination effect on ORR. 
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The additional information on the methodology and background studies can be 

found in appendices E, F and H. 

5.1. Introduction 

Polymer electrolyte membrane fuel cell (PEMFC) has received attention from the 

vehicle manufacturing industry to reduce carbon emissions by generating electricity from 

electrochemical reaction between hydrogen and oxygen instead of burning fossil fuels. 

Commercialization and sustainability of such a power source is currently limited as the 

electrocatalysts used for the hydrogen and oxygen reaction in PEMFCs are susceptible to 

poisoning by various contaminants (15, 40, 41, 80) (air borne and liquid phase) resulting 

in higher cost and declining performance. When the contaminants reach the catalyst layer, 

they readily adsorb on the Pt sites preventing the oxygen reduction reaction (ORR) (O2+ 

4H++ 4e- → 2H2O). The ORR reaction is usually one of the most inhibiting processes for 

developing high performance electrocatalyst for fuel cell vehicles (85). For the 

development of PEMFC electrodes which are less susceptible to contamination, 

understanding the process of adsorption of the contamination at the catalyst surface is 

necessary. The contamination of Pt electrode is a complex process since the contaminants 

can modify the intrinsic catalyst properties. The common and established sources of 

contamination are air (cathode) and fuel (anode) until much recently when components of 

fuel cell (e.g. structural plastics, assembly aids, coolants, membranes and gaskets) were 

also identified as the potential contamination sources. To reduce the fabrication cost of a 

PEMFC stack and assembly, off-the-shelf adhesives and sealants (assembly aids) and 

structural plastics which are not specifically designed to be used in the hot and humid 

condition of a PEMFC are currently being considered by the PEMFC manufacturers (1, 
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31). While there are many existing studies on air contaminations (15, 24, 43, 86) very 

little literature exists that quantifies and explains the contamination at the surface of the 

Pt catalyst originating from the organic compounds that may leach from those assembly 

aids. 

The performance of a fuel cell has been found to degrade over time in the 

presence of not only air contaminations but also system derived contamination in a 

PEMFC (11). For example, recent studies on the additives of the glycol based coolants 

have shown detrimental effects on Pt on Vulcan carbon catalyst. These contaminants 

originate from ethoxylated nonylphenol surfactant, and azole- and polyol-based corrosion 

inhibitors which are frequently added to the commercially available BioGlycol coolants 

to enhance specific functionalities. K.E. Swider Lyons et al has conducted a study with 

three above mentioned additives and glycol mixtures and have observed that the lost 

ECA could be fully recovered in clean electrolyte for the mixture with the surfactant pure 

glycol-water, glycol-water-surfactant mixtures and glycol mixture containing the polyol 

corrosion inhibitor, while coolant mixtures with the azole corrosion inhibitor caused 

irreversible losses to the ECA and oxygen reduction reaction (ORR) activity. The ECA 

and ORR activity could be recovered to 70% of its initial values after voltammetric 

cycling to 1.50 V in case of azole poisoning (30). 

As a part of managing water content during polyurethane synthesis (attains the 

desired properties in urethane sealants) p-toluenesulfonyl isocyanate [PTSI] is frequently 

used as an additive for water scavenging. The cyanate groups of PTSI hydrolyzed to form 

CO2 and p-toluenesulfonamide PTS, the species that was identified in the one week soak 

leachate from Bostik 920 (83). This study focuses on connecting and comparing the 
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effect of leachate (Bostik® 920) to the organic and inorganic constituent (p-

toluenesulfonamide or 4 methyl benzyl sulfonamide and chloride ion). Bostik® 920 is a 

Urethane assembly aid that is being considered to be used in PEMFC in place of metal 

components for cost reduction purposes. Bostik® 920 was spread very thin on 2”x4” (5.1 

cm x 10.1 cm rectangular pieces) Teflon sheet and dried for 24 hours. Then it was soaked 

in DI water at 90°C for 1 week, so that the surface are of the adhesive to the volume of 

water ratio was 1.5cm-1 (i.e., 150 mm2/ml of DI water). The Teflon sheets coated with the 

sample were removed from the bottles at the end of the soak and the leached solution was 

subjected to TOC, GCMS, IC and ICP-OES measurements which would be needed 

during the ex-situ experiments. In the laboratory, p-toluenesulfonamide (4MBSA) was 

detected as the major organic compound using GCMS and chloride ion as the major 

anionic constituent when Bostik® was soaked at 90°C. The TOC of the leachate was 110 

ppm and the chloride ion concentration was 22 μM. 

The first part of the study compares the effect of the leachate from the adhesive 

with the identified model compound in the 1 week soak of the leachate after adding three 

low concentrations of both using TF-RDE method. Under the operating conditions of a 

PEMFC (80°C and humidity) the assembly aids may leach organic and inorganic 

compounds or ions which may mix into the fluid stream and enter the fuel cell and poison 

the catalyst and ionomers. Both Bostik® and p-toluenesulfonamide adsorbed on Pt 

catalyst, leading to reduced electrochemical surface area (ECA) and an inhibited ORR on 

the catalyst. 

The paper also compares the effects of ions and organics separately and 

collectively in the second part using thin film RRDE studies after adding 110 ppm 
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equivalent of 4MBSA and 22 μM of Cl- ions and a mixture of 110 ppm equivalent of 

4MBSA and 22 μM of Cl- ions in three different sets of experiments. The purpose of this 

study is to provide quantitative evidence of the poisoning characteristics of different 

types of contaminants originating from the assembly aids so that they can be investigated 

before using them in a PEMFC. These details will also assist the manufacturer to provide 

a guideline to limit the concentration of the materials to be used in a PEMFC based on 

the surface area to volume ratio of exposure in PEMFC restricting the contamination. 

Liquid phase contaminants may adsorb on Pt on both the cathode (where ORR 

takes place) and the anode (where hydrogen reduction reaction or HOR takes place) in a 

PEMFC much like air contaminations (SO2, NH3, CO, CO2, H2S etc.) (15, 23, 24, 40, 44, 

56). Since the contamination effect on the HOR is less pronounced compared to the ORR, 

it requires detailed investigation because its slower kinetics combined with the effects of 

contaminants can result in high over potential and loss in fuel cell performance (44, 58). 

So it will be useful to develop protocols (59) for systematic understanding of the 

contamination process from the liquid phase contamination such as chemicals leached out 

from the stack, on Pt/C using ex-situ methods like rotating disk electrode to develop 

commercially viable catalyst with high ORR activities with specific application in 

PEMFC. 

Thin-film rotating disk electrode (TF-RDE) method is employed in this study to 

understand the change in of oxygen reduction reaction (ORR) and electrochemical 

surface area (ECA) after injecting contaminants leached out from commercially available 

assembly aids which are considered for being used in a PEMFC. These assembly aids 

have a wide range of properties and functionality and are not manufactured specifically 
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for the hot and humid operations in a fuel cell. TF-RDE method was chosen for easy 

isolation of ORR activities of the catalyst in the presence of contaminants, which was not 

possible in-situ (in a PEMFC).  

5.2. Experimental 

5.2.1. Determining time required for the organic contaminant molecule to reach Pt 

sites 

The leachate and its major organic constituent 4MBSA were injected in the 

electrolyte at 1.05 V during a fast scanning (100mVs-1) cyclic voltammetry experiment. 

The purpose of this experiment was to determine the amount of time that the 

contamination molecules need to reach equilibrium with Pt sites. This experiment was 

done before doing any ORR experiments. The detailed experimental procedure is given 

in ref. (59, 70). 

5.2.2. Rotating disk experiments to measure ECA and ORR activity of Pt/C 

The details of experimental procedure including electrode preparation and 

conditioning were reported in (59, 70). Additionally, the schematic of the ORR is 

presented in figure 5.1. Figure 5.1 shows the three essential part of the experimental 

procedure – baseline, contamination and recovery. The contamination part was repeated 

three times for three different concentrations of the leachate and 4MBSA. Since kinetics 

data was extracted from the ORR polarization curves, the background of ORR was 

recorded in N2 gas saturated electrolyte. 

The off-the-shelf adhesive Bostik ® 920 (Henkel) is analyzed by GCMS and the 

most prevalent model compound was identified to be p-toluenesulfonamide. Bostik ® 
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920 was aged at 90°C (close to fuel cell operating temperature) in DI water for one week 

inside an air tight PTFE bottles. The aging process at high temperature facilitates the 

organic compositions of the adhesive to leach out in the water. The water was decanted 

and analyzed for total organic carbon (Thermo Scientific), solution conductivity (Thermo 

Scientific) and pH. It was also subjected to GCMS, IC (Dionex ICS-90 Ion 

Chromatography System) and ICP-OES (Perkin Elmer Optima 5300 DV) to qualitatively 

detect the organic and inorganic compositions present in it. In GCMS the most detectable 

peak was due to p-toluenesulfonamide. 220 ppm solution of 99.9% pure (Sigma Aldrich) 

p-toluenesulfonamide or 4-methylbenzene sulfonamide was prepared with DI water and 

was used for the RDE experiments. 

The total organic carbon (TOC) of the leachate from a 1 week soak was 110 ppm 

and Cl- concentration was 22 μM detected by ICP-OES. Note that, Cl- was the only anion 

identified in the leachate. To study the effect of concentrations we used dilutes of this 

leachate corresponding to 0.02, 0.2 and 2 ppm which corresponds to 1.8, 18 and 180 μM 

of carbon inside the electrolyte. Those three concentrations were chosen for 4MBSA in 

terms of C atoms concentration which translates to 1.8, 18 and 180 µM. Alternately, 

these concentrations were 0.26, 2.6 and 26 μM of 4MBSA in 145 ml of electrolyte (i.e. 

from a stock solution of 3300 ppm of 4MBSA and assuming 7 carbon/4MBSA). 

Similarly, in those three concentrations of leachate the Cl- concentration was 0.004, 0.04 

and 0.4 μM respectively. 

This organic compound (p-toluenesulfonamide) and Cl- anions are investigated 

for their individual and combined effects with a concentration of 1.3 mM and 22 μM 

respectively in the second part of the paper. The p-toluenesulfonamide was purchased 
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from Sigma Aldrich (99% purity) and the Cl- was injected in the form of HCl acid from 

Sigma Aldrich. 

5.2.3. RRDE experiments with constituent organic compound and anion (original 

higher concentration) 

For the RRDE experiments, thin electrodes were prepared on the glassy carbon 

disk (5 mm dia) as described in ref. (59, 70). A reference hydrogen electrode, a Pt gauge 

spot welded on a Pt wire counter electrode in 145 ml electrolyte were used with a Pine 

instruments bi-potentiostat. First RRDE experiments were performed in uncontaminated 

electrolyte to obtain baseline value of ECA and the ORR. Then the same were performed 

on contaminated electrodes (contaminated with Bostik® 920 and p-toluenesulfonamide) 

at room temperature and fraction of peroxide was calculated using equation 1. 

XH2O2 =
2IR

N

ID+ IR
N

                                                                [1] 

Where, IR is the ring current and ID is the disk current and N is the collection 

efficiency. The experimental conditions were same as RDE experiments. Please see 

figure 5.1 for detailed steps of ORR experiments. 
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5.3. Result and discussion 

5.3.1. Study and compare the effects of the leachate and the organic constituent 

found in the leachate 

5.3.1.1 Determining time required for the organic contaminant molecule to reach Pt 

sites 

The experiments were performed with controlled final concentration of carbon 

(180 µM) inside RDE cell (inside 145 ml electrolyte). Figure 5.2 shows that the effect of 

contamination was observed immediately after adding the leachate at 1.05 V. As the CV 

proceeds cathodically, a noticeable decrease in the Pt-O reduction region can be observed. 

The first cycle (in red) shows decrease in Hupd region (H+ + e- ↔ Hupd) and in the case of 

Bostik® 920 (figure 5.2) – the shape of the CV changes around 0.5 V in the Hupd region 

highlighted in the rectangle. In the case of p-toluenesulfonmide (figure 5.2), however, 

this feature is absent. This is due to the different nature of adsorption interaction between 

the adsorbed species and Pt (87) in presence of two different contaminants. The leachate 

from Bostik® 920 has some inorganic contaminations. 

In the first cycle, the area under the Pt-O reduction region is not affected much 

during the cathodic sweep. However, the area under Pt oxidation region decreases as lot 

during the anodic sweep. From 2nd cycle onwards the area under the Pt-O reduction loss 

is much steeper. Figure 5.3 shows the comparison of the loss in ECA (%) obtained from 

integrating the Hupd (empty symbols-Hupd) and oxide (solid symbols-oxide) region as a 

function of cycles. The solution was injected at 1.05 V after first 10 cycles and was 

scanned cathodically. The effect is seen immediately in the first cycle (red line) for both 
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cases. It took ca. 8 cycles for the CV to come to a steady state. Therefore it took 20.5*8= 

200s or over 4.1 minutes for the molecules to reach catalyst surface and adsorb on (block) 

the Pt sites. However, it takes a couple of seconds (ca.2.5 s) for the contaminant 

molecules to be transported from the bulk to the surface, which is around 0.8 V in the 

cathodic sweep. This can be supported by the fact that ECA-Hupd is lower than ECA-

oxide (% loss of pt sites = 100 –NECA), i.e. the loss calculated from Hupd region is 

greater than that of oxide region during the first cycle. In consecutive cycles, the loss in 

ECA-Hupd curve is much steeper than ECA-oxide. The Pt-oxide region current is due to 

the oxidation of Pt by OH from H2O molecules (Pt + OH- → Pt-OH + e-, followed by Pt-

OH + OH-→Pt-O + H2O + e-). During the 2nd cycle, the contaminant molecules have 

enough time to adsorb on the electrode and thereby hindering the chemisorptions of 

OHads on Pt at 0.55 V (anodic sweep). This decreases the amount of Pt-O formed during 

the anodic sweep, which in turn decreases the reduction of Pt-O. Since the H+ is much 

smaller in size than OH, adsorption of proton on the Pt sites was more favored than that 

of OH on Pt sites in presence of contaminant molecules. Therefore, the % ECA loss in 

Hupd was less than ECA-oxide region. 

The height of Pt-O reduction peak is independent of the contamination 

concentration, it only depends on the condition under which the scan in the oxide region 

was performed (88). In this study, the contamination was added after formation of oxide 

peak during the first cycle, so the reduction peak was very prominent and unaffected by 

contamination, during the cathodic cycling of the first cycle. But in later cycles, it 

decreased since the oxide peak couldn’t form in the presence of contamination. 
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5.3.1.2 Effect of contaminants on electrochemical Surface area determined by CVs 

The CV was measured after injecting the leachate and the model compound in 

two different set of experiments while the electrode was held at 0.4 V (vs. RHE) to avoid 

any potential oxidation of the contaminants. The CVs were performed at room 

temperature. The CVs before (baseline) and after adding contaminants (at the end of the 

experiments) are shown in figure 4.  After the contaminations were added, the Hupd region 

decreased as shown with the upward arrows. Figure 5.4 shows that organic compound p-

toluenesulfonamide (b) had more severe effects on Hupd region than the leachate (a). 

5.3.1.3 Contamination effect on oxygen reduction reaction (ORR) activities of Pt/C 

Table 1 shows the OOR mass activities for the Bostik and 4MBSA. The 

experiment was repeated twice with 5 mm and 6 mm diameter electrodes (0.196 and 

0.283 cm2 electrode area respectively). The continuous line represents experiment done 

using 0.196 cm2 electrodes and the dotted line represents experiment done using 0.247 

cm2 electrode. The data fell within 5% of variance. 

The normalized values of specific activities without any contamination in 0.1 M 

perchloric acid in three consecutive steps simulating the process of injecting three 

dosages of contaminants. In each step the Pt/C was pre-reduced at 0.4 V for 420s. 

The effect of contamination on ORR activities of Pt/C is presented in columns 3-6. 

The loss in ECA and ORR activities observed during the control experiments are given in 

table 2. This loss of activities can be due to the adsorbing species from the electrolyte. 

The normalized activity follows the same trend as available ECA. The normalized 

ECA (ECA at any point of time during the experiment divided loss in mass activity for 
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the control experiment (without leachate)) is around 4%, 6% and 12% for three steps (1.8, 

18, 180 µMs of C). Both Bostik and the 4MBSA showed decreased mass activities. 

Figure 5.5 and 5.6 present the family of polarization curves obtained during the 

contamination experiments with Bostik® and 4MBSA as a function of concentrations of 

the contaminants. The black line is the initial ORR performed on clean Pt/VC in O2 

saturated electrolyte. The initial ORR (black line) starts at 0.97 V and the ORR proceeds 

entirely through 4e- pathway (89). The region between 0.98 and 0.5 V is kinetic diffusion 

controlled while between 0.45 and 0.3 is diffusion controlled with a limiting current of -6 

mAcm-2. When the three different concentrations of the contaminants were injected in 

three steps (1.8 μM, 18 μM and 180 μM) to the electrolyte, the diffusion limiting current 

started getting smaller corresponding to 3.2e- and 3e- transfer processes for Bostik and 

4MBSA respectively. But in a 0.1 M HClO4 electrolyte, the amount of peroxide 

formation is as low as 22% for an ORR involving 2.7 to 3.9 e- transfer (90). So, the 

contamination process did not entirely proceed through 2e- pathway but there might be 

around 10 to 20% peroxide below 0.3 V. Therefore, no significant peroxide formation 

was observed at the ring electrodes during the contamination experiments (not shown in 

the figures 5.5 and 5.6). 

Figure 5.5 shows gradual loss in ORR current due to addition of Bostik® at 0.9 V 

but figure 5.6 shows at higher concentration of 4MBSA, the polarization curve lost the 

flat region in the diffusion limited potential region, indicating depletion of oxygen layer 

on the Pt sites in presence of adsorbed contaminants. Still, the current was not low 

enough for the ORR to completely proceed through the 2e- pathway to form peroxides. 
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Since determining the coverage of contamination by ex-situ analyses does not 

provide decisive information on the extent of catalyst poisoning mass activity remains the 

more important parameter to compare between contaminant exposed Pt catalysts (91). 

Mass activities after contamination with the leachate of Bostik® decreased to 87%, 60%, 

28% respectively (ORR in figure 5, the polarization curves for 1.8, 18 and 180 μM of C 

in the leachate). Similarly, after the Pt sites were contaminated with 4MBSA mass 

activities decreased to 85%, 46%, 23% from 100%. 

5.3.1.4 Comparison of Tafel Slopes 

The Tafel slope was calculated for higher potential (0.85-0.95 V, kinetic region) 

and lower potential (0.65-0.85 V, mass transfer limited region). In Tafel plot the x-axis is 

the current given by: 

ITafel = ik*1.3*105

loading*ECA*area of electrode
 

Figure 5.7 shows the double Tafel slope in log scale observed during the 

contamination experiments. The Tafel slope in the higher potential region for the baseline, 

or uncontaminated, polarization curve was around 68-70 mV/decade which is as expected 

in 0.1 M perchloric acid. Figure 5.7 and table 5.2 also suggest that at a given potential the 

kinetic currents for contaminated polarization curves were lower compared to the clean 

ones. 

The Tafel slope measured from iR-free polarization curve at room temperature in 

0.1 M HClO4 at a scan rate of 20mV/s (range of polarization being -0.01 to 1.0V) has two 

parts. In the higher over potentials (typically above 0.8) it is around -118 to -130 
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mV/decade, but in the lower over potential region it is around -65 to -70 mV/decade for 

carbon supported Pt nanoparticles (Pt/C) (72, 92, 93). 

The Tafel slope was calculated for both high and low potential region and given 

in table 5.2. Above 0.85 V the Tafel slopes extracted from the ORRs performed in 

contaminated electrolytes were around -90 mV/decade. Since the tafel slope changed 

with addition of contamination, it can be concluded that contamination changed the ORR 

mechanism. The exchange current densities were also lower in the case of contaminated 

electrolyte. 

Adzic et al. proposed that the adsorbed OH (from H2O and not from O2) could 

alter the adsorption energy of the ORR intermediates, which causes an additional 

energetic effect on the ORR kinetics. This, in turn, results in the variation of Tafel slope 

(94). 

Adzic et al. has also projected an ORR model defining the Tafel slope in an 

absorbate free single crystal (Pt(111)) surface in HClO4 so that OH adsorption cannot 

interfere with the model. Separating the anion adsorption effects (site blocking and 

electronic) from OH adsorption effect on Pt(111) helped them determine the cause of 

double Tafel slope. The adsorption of OH increases with coverage of OH ions on Pt site 

changing the slope of the polarization curve in the mixed kinetic-diffusion control region 

(around 0.8V vs RHE) (72). 

Adzic et al further analyzed the cause of change in Tafel slope from the kinetic 

region (higher Tafel slope) to the diffusion control region (lower Tafel slope) by 
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developing kinetic equations (double trap kinetic model) for all the reaction steps (electro 

catalyzed reactions occurs in multi-step, forming reaction intermediates). 

 

Where, RA = reductive adsorption 

RD = reductive desorption 

DA = dissociative adsorption 

RT = reductive transition 

The kinetics equation developed by them is shown above. The equation shows the 

intermediate steps.The variance of Tafel slope is explained to be roughly due to the 

change in OH coverage with potential. OH coverage increases at low potential as O 

coverage increases and then becomes constant making the Tafel slope -118 mV/decade. 

The lower Tafel slope at small overpotentials implies faster increase in current by 

decrease of highest activation barrier for the forward reaction (RT) as well as by the 

increase of lowest barrier for the backward reaction (-RT). Thus, the net reaction rate at 

higher potential region doubles that in the lower potential region. Since the RT and –RT 

has the highest and lowest barriers at zero overpotentials respectively the transition of 

Tafel plot is determined by the conversion of O/OH (72). 

For higher potential region, after addition of Bostik® 920 the slopes increased 

slightly, but after addition of p-toluenesulfonamide the slopes increased to almost double 

the baseline value. For lower potential region it was difficult to extract the Tafel slope, 



www.manaraa.com

 

149 

since some of the data points in log plots were undefined after reaching the limiting 

current. Therefore, Tafel slopes extracted at higher potential is much more relevant 

(figure 5). 

5.3.2. Effects of organic and anionic constituents of leachate from Bostik 920® on 

ORR of Pt/C 

Rotating Ring disk electrode (RRDE) study was employed to measure the 

peroxide formation before and after addition of contaminants. The reduction of oxygen 

proceeds through a four electron pathway to H2O or a two electron pathway to H2O2 (95). 

 

Although ORR via four electron transfer is the major pathway for oxygen reaction 

for Pt (111) and Pt (100) surfaces at Hupd region ( < 0.3 V) , a substantial amount of H2O2 

(upto 22%) also detected in the ring electrode using rotating ring disk electrode (RRDE) 

method (47) indicating the deviation of 4e- to up to 2.7e- (96) in 0.1 M HClO4. Since 

carbon supported Pt catalysts typically consists of crystals with large fraction of Pt (111) 

and Pt (100), they can be expected to behave like single crystals (47). Therefore, RRDE 

method will help determine the reaction pathway in the presence of contaminants on high 

surface area Pt on carbon. 

5.3.2.1 Effect of 4MBSA and chloride ions 

The GCMS showed that Bostik® 920 (TOC= 110 ppm) has p-toluenesulfonamide 

(4MBSA) and Cl- (0.8ppm) as the only important anion among other anions searched 
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(NO3
-, SO4

2-, F-) (83). An experiment was designed to determine the effect of organics 

and anions. To investigate the effects of all the components (organic and inorganic) of the 

leachates together, first we needed to obtain an insight on the effects of the individual 

components. Therefore, Cl-, 4MBSA and mixture of Cl- and 4MBSA were injected in the 

electrolyte solution at room temperature in three separate experiments and effects of each 

component were compared against the collective effects of organic and anion (mixture of 

4MBSA and Cl-). The purpose of this experiment was to create the same concentration 

condition inside the electrolyte as found in Bostik® 920 to capture the entire effect of the 

main constituents of the leachate separately and collectively. The data provides 

quantitative insight to any assembly aids of similar grade that may leach similar organic 

and inorganic compounds when used in a fuel cell at high temperature. 

A. Baselining with organics 

The first part of the experiment focused on the impacts of the organic compound 

alone. The total organic carbon content found in the 1 week soaked leachate of Bostik® 

920 was 110 ppm. Since no other organic compounds were detected by GCMS in that 

leachate, a solution of 4MBSA was prepared and injected in the electrolyte so that the 

final concentration inside the cell was same as the TOC found in the leachate. There was 

a severe reduction of the area under the peaks in hydrogen adsorption/desorption region 

and Pt-oxidation and Pt-O reduction region. A distinct peak at 1.0 V was observed and 

the size of the peak increased with current proceeding to the cathodical part of the scan. 

That peak was also observed in the CVs performed with Bostik® 920 and low 

concentration of 4MBSA (described in sec. 5.3.2. in this paper). This peak is 

characteristic of aromatic compounds having amine groups. There wasn’t any significant 
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change in the capacitance region, indicating the organic molecules are unable to displace 

any adsorbed perchlorate anions from the Pt surface. The electrochemical surface area 

(ECA) was decreased by 64%. 4MBSA is a sulfonamide with an S=O group. In 4MBSA 

the adsorption on Pt takes place through either S=O or –NH2 group. The S atom is 

tetrahedral in 4MBSA and the adsorption is hindered. So the molecule adsorbs on Pt with 

–NH2 group. 

Figure 5.8 shows the uncontaminated partial and full CVs (red and black lines) 

along with CVs in the contaminated solution (blue and purple). The ORR activities were 

significantly affected. A small amount of peroxide was detected beyond 0.3 V in the ring 

(figure 5.9). 

B. Baselining with Cl- anion 

The 1 week extract of Bostik® 920 was found to contain chloride as the only 

anion. To analyze the role of anions on ORR of Pt/C, chloride was added in the HClO4 to 

make the final concentration of chloride ions same as detected in the extract of Bostik® 

920. The objective of this experiment was to uniquely identify the effect of anion and 

then compare with the overall effect of anion and organic compound. The ECA loss after 

adding 22 μM Cl- anion was calculated and compared against the uncontaminated 

solution (black and red lines) in 0.1 M HClO4. There were three small peaks, centered at 

ca. 0.15, 0.2 and 0.3 V in the Hupd potential region. These peaks correspond to coupled 

processes of hydrogen desorption with Cl- anion adsorption on the Pt sites (77) as shown 

in figure 5.10. 

The effect of anion on ORR activities on Pt/C is given in figure 5.11. The disk 

and ring currents were measured and plotted against disk potential. There was a large 
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decrease in the current at 0.9 V after addition of Cl- anion. This is a characteristic of 

anion effect on ORR. This feature is not seen with organic compounds. The ring current 

increases after 0.3 V and then decreases after 0.5 V. these findings suggest that between 

0.3 and 0.5 V the ORR proceeds through the 4 e- pathway and after 0.5 V peroxide 

formation decreases gradually to almost 0 (figure 9). 

Even if the ECA did not change much, the ORR activities in presence of Cl- 

anions decreased a lot. Due to adsorption of Cl- on Pt sites, the O2 molecule could not 

reach the Pt sites, resulting in surpassed ORR activities (figure 9). 

C. Effect of organic and anion 

The third and final part of the experiment was mixing the anion and the organic to 

make a solution with same anion and model compound concentration as found in the 

leachate of Bostik® 920. This experiment was important because the leachate is a 

mixture of organic and inorganic (cationic and anionic) species. The adsorption process 

was not clear from the data obtained from the individual model compound and the anion. 

When the mixture was added to the electrolyte, depending on the effect seen in the cyclic 

voltammograms and the linear sweep voltammgroams, some insight was gained on the 

process of adsorption in presence of anion and organic compound. Earlier, we have seen 

that the leachates have fewer effects than same concentration mixtures of organic 

compounds due to the presence of other contaminating species. This experiment will 

prove if the anion effect is enhanced or suppressed in presence of organics. 

Figure 5.12 presents the effect of mixture of 4MBSA and Cl- on ECA. The 

characteristic features (peaks of Cl- in Hupd region) of Cl- were entirely absent in the 

contaminated CVs (blue and green dotted lines). The hydrogen adsorption/desorption 
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areas and the Pt-oxidation and reduction regions decreased. Even after recovery, the 

features of the initial CVs (red and black lines) were not retrieved. 

Figure 5.13 shows the effect mixture of 4MBSA and Cl- on ORR of Pt/C. The 

figures on the left hand sides show the ring and disk currents and the right hand side 

figure shows the amount of peroxide formed detected by the ring. The black lines show 

the currents and peroxide formation in the uncontaminated electrolyte in the beginning of 

the test and the red lines show the effect of the mixture of the contaminants. The recovery 

was performed at the end of the test by holding the electrode at higher potentials (0.75, 

0.85, 0.95 and 1.05 V) and cycling up to 1.05 V. The purple lines display the recovery. 

The current at 0.9 V decreased to 6% of the initial value. Therefore, the 

characteristic of Cl- anion was retained in the case of ORR as opposed to the CVs. There 

was significant amount of peroxide formation that started at very low potential. The ORR 

is strongly inhibited under the diffusion control region. Up to 0.7 V the peroxide 

formation was between 50 to 20%. 

The current at 0.9 V and the ECA loss were summarized in figure 5.14. The mass 

activities were not compared since the Cl- and 4MBSA are very dissimilar in nature and 

in their individual effects on the ECA. The current at 0.9 V was divided by the current at 

0.9 V in the beginning of the test to give the percentage 0.9 V currents. Two contrasting 

features were clearly observed. The addition of organic 4MBSA resulted in higher ECA 

loss but lower loss in current at 0.9 V. The opposite trend was observed when only Cl- 

was added. So, 4MBSA adsorbs faster in the Pt sites compared to Cl-. The conclusions of 

the experiments with organic and anionis species can be summarized as: 
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1. The contamination loss is 

i) due to adsorption of contaminants on Pt (Loss in ECA, ORR) 

ii) due to absorption of contaminants on ionomer (Loss in ORR currents) 

2. Effect of organic 1.3 mM 4MBSA: Pt contamination > ionomer contamination  

3. Effect of anion 22 uM Chloride: loss in 0.9 V ORR current due to Cl– by blocking 

Pt-O intermediates. This is not ionomer effect, this is entirely anionic effect. 

4. Effect of anion and organic, 1.3 mM 4MBSA + 22 uM Cl–: Pt adsorption + 

ionomer absorbtion + Chloride ion inhibiting Pt-O formation 

5. Ionomer effect from 4MBSA: after contamination ≈ after recovery, therefore 

ionomer effect is not recoverable, but chloride effect is. 

5.4. Conclusions 

This study showed that contaminants (organic or inorganic) leached from 

adhesives used in PEM fuel cell has detrimental effect on ORR activities and ECA. The 

poisoning effect is more prominent for the model compound than the leachate. This effect 

was supported by reduction in ECA and mass activities of contaminated electrodes. The 

loss in ECA and ORR activities (mass activities, mA/mgPt and specific activities, µAcmPt
-2) 

is compared at the beginning of the test and after addition of different dosage of 

contamination for both the leachate solution and the organic compound present in it. 

 The decreases in ECAs due to poisoning with leachate and model compound were 

very similar. 

 Due to contamination, the formation of Pt-OH and then Pt-O was hindered 

severely. But the decrease in ECA measured at Hupd is less than that measured at 

oxide region. 

 The mass specific activities due to the contamination from the model compound 

were more than that of the leachate even though they both showed very similar 
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reduction in ECA. After adding 1.8, 18 and 180 µM of C equivalent of Bostik 20 

and 4MBSA, the effect on ECA loss and ORR activities were very similar. For 

180 µM of C equivalent of Bostik® 920 the ECA loss was 52%, and for 180 uM 

of 4MBSA – 58%. This indicates that other components compete with organics in 

adsorption on Pt. Consequently, the final loss of ECA by leachate is lower than 

that by its constituent organic compounds. 

 The Tafel slope was measured at higher and lower potential region. The higher 

potential region yielded Tafel slopes below100 mV/decade whereas at lower 

potential region the slopes were very high. Also, the Tafel slopes increased with 

increase in contamination concentrations. 

The total effect of all the components (organic and inorganic) was quantified by 

ECA loss of 60%, whereas the loss for adding 1300 µM (equivalent to 110 ppm of TOC) 

4MBSA showed higher ECA loss – around 58%. In the presence of anion, the ORR 

activity was suppressed a lot. This feature was observed in both cases – anion with 

organic and anion alone. 

 The mass activity decreased to 31% for 4MBSA alone, to 9% for Cl- alone and 7% 

for a mixture of 4MBSA and Cl-. After recovery, the mass activity came up to 

68%. This proves that anion has more effect on ORR activity measured at 0.9 V 

than the organic compound. 

 Ring current was detected in three cases with a significant amount of peroxide (50 

to 60%) formed beyond 0.3 V only in case where a mixture of both organic and 

anion was injected. There is an interaction between the anion and the organic 

compound which is modifying the contamination characteristic of the individual 
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components. The detection of peroxide supports the hypothesis that ORR pathway 

changes from 4e- to 2e- in presence of organic and inorganic contaminants. 
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Table 5.1. Normalized mass activities of Pt/C at room temperature in 0.1 M perchloric 
acid before, during and after recovery of contamination 

 

ORR 

activities 

after 

contaminati

on 

Normalize

d ECA 

Normalize

d mass 

specific 

activity  

Normalize

d ECA 

Normalize

d mass 

specific 

activity  

Normalize

d ECA 

Normalize

d mass 

specific 

activity  

(%) (%) (%) (%) (%) (%) 

control Bostik® 4MBSA 

Step 1 98 ± 0.5 95.9 ± 3.0 
76.16 ± 

1.3 
87.0 ± 2.6 71.4 ± 0.7 84.5 ± 3.5 

Step 2 92 ± 1.4 93.9 ± 3.6 
55.4  ± 

0.6 
59.8 ± 1.1 50.1 ± 2.1 45.6 ± 1.1 

Step 3 84 ± 0.4 88.6 ± 2.6 
48.0  ± 

1.4 
28.6 ± 5.0 42.3 ± 0.8 23.0 ± 0.2 

recovery - - 
70.2  ± 

0.7 
77.2 ± 4.2 60.1 ± 3.5 82.0 ± 2.5 
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Table 5.2. Comparison of Tafel slope before and after addition of contaminants from the 
leachate (Bostik® 920) and the model compound (p-toluenesulfonamide) of pre-reduced 
Pt in higher and lower potential region (interpreted from figure 5.7) 

 

 
Bostik® 920 p-toluenesulfonamide 

 

high 

potential 

low 

potential 

high 

potential 

low 

potential 

0.1 M HClO4 (baseline) 65 90 64 85 

0.1 M HClO4 + 1.8 µM 

compound 
68 95 73 92 

0.1 M HClO4 + 18 µM compound 72 105 78 100 

0.1 M HClO4 + 180 µM 

compound 
74 110 82 108 

0.1 M HClO4 (recovery) 70 95 72 90 
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Figure 5.1. Schematic of the experimental protocol to investigate the impact of the 
organic contaminants found in the DI water soak of the materials used in a PEMFC. The 
loss of ECA and ORR activity of Pt/VC were measured using three electrodes TF-RDE 
apparatus at room temperature. 
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Figure 5.2. Votammograms showing effect of adding 28.3 µl of each of the contaminants 
Bostik®920 (left) and p-toluenesulfonmide (right) on Pt/C (Vulcan) at room temperature in 
0.1 M HClO4, scanned from 0.025 to 1.05 V. The TOC of Bostik®920 and p-
toluenesulfonmide was 110 ppm. Original concentration of p-toluenesulfonmide was 220 
ppm. The final carbon molecule concentration for both molecules was 180µM inside the 
RDE cell.  
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Figure 5.3. The change in surface coverage by 
contaminants (loss of ECA due to adsorption of 
contaminant molecules on Pt sites) with CV cycles from 
0.025 to 1.05 V at a scan rate of 100 mV/s as measured 
under the Hupd (open symbols) and oxide region (solid 
symbols) of the voltammograms normalized by initial 
available surface in the clean electrode 
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Figure 5.4. Cyclic Voltammetry to 1.05 V of uncontaminated contaminated (a. with bostik 
920 and b. with 4MBSA) and contamination recovered Pt/C at room temperature in 0.1 M 
HClO4 at 20 mVs-1. 
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Figure 5.5. ORR polarization curves for Pt/VC in 0.1M HClO4 
as electrolyte: initial or baseline ORR (black solid line), with 
1.8x10-3 mM Bostik® (red solid line), with 18x10-3 mM 
Bostik® (green solid line), with 18x10-2 mM Bostik® (violet 
solid line). The WE was transferred to a second set of cell 
with clean electrolyte after contamination to attempt recovery. 
The blue solid line was obtained during recovery. Conditions: 
scanned at 20 mVs-1 with electrode rotation at 1600 rpm of the 
electrode in a well O2 saturated electrolyte at room 
temperature. 
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Figure 5.6. ORR polarization curves for Pt/VC in 0.1M HClO4 
as electrolyte: initial or baseline ORR (black solid line), with 
1.8x10-3 mM 4MBSA (red solid line), with 18x10-3 mM 
4MBSA (green solid line), with 18x10-2 mM 4MBSA (violet 
solid line). The WE was transferred to a second set of cell with 
clean electrolyte after contamination to attempt recovery. The 
blue solid line was obtained during recovery. Conditions: 
scanned at 20 mVs-1 with electrode rotation at 1600 rpm of the 
electrode in a well O2 saturated electrolyte at room temperature. 
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Figure 5.7. Tafel plots on pre-reduced Pt after addition of (a) Bostik 920 and (b) p-
toluenesulfonamide. The ORR data were corrected for mass transfer limitations, elevation 
effect (due to the altitude of Denver, the partial pressure of oxygen over the RDE cell is 83 
kPa instead of 101 kPa. Legend: black- baseline, dark blue -1.8 µM, green 18 µM, light blue 
-180 µM and violet- recovery. Experimental condition: pre-reduced Pt/C (17.37 µgPt/cm2) 
i.e. 400 S at 0.4 vs. RHE before the sweep at 20 mV/s from -0.01 to 1 V in oxygen saturated 
0.1 M perchloric acid at 1600 rpm. 
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Figure 5.8. Cyclic Voltammetry to 1.05 V of contaminated 
electrolyte with 1.3 mM 4MBSA on Pt/C at room temperature in 
0.1 M HClO4 at 20 mVs-1 
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Figure 5.9. Role of 110 ppm equivalent of 4MBSA on ORR activities of 
Pt/C in O2 saturated 0.1 M HClO4, rotating WE at 1600 rpm. The Left 
hand side figure depicts the ring and disk currents during ORR and the 
right hand side figure shows the corresponding fraction of hydrogen 
peroxide formation. The black line shows ORR in clean electrolyte, while 
the green line shows the LSVs in contaminated electrolyte. 
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Figure 5.10. Cyclic Voltammetry to 1.05V of contaminated electrolyte 
with 22 µM Cl- on Pt/C at room temperature in 0.1 M HClO4 at 20 
mVs-1 in a N2 saturated electrolyte. 
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Figure 5.11. Role of 22 µM Cl- on ORR activities of Pt/C in O2 
saturated 0.1 M HClO4, rotating WE at 1600 rpm. The left hand side 
figure depicts the ring and disk currents during ORR and the right 
hand side figure shows the corresponding fraction of hydrogen 
peroxide formation. The black line shows ORR in clean electrolyte, 
while the green line shows the LSVs in contaminated electrolyte. 
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Figure 5.12. Cyclic Voltammetry to 1.05 V of contaminated electrolyte 
with 640 µM 4MBSA and 22 µM Cl-, on Pt/C at room temperature in 0.1 
M HClO4 at 20mVs-1 in a N2 saturated electrolyte. 
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Figure 5.13. Role of 110 ppm equivalent of 4MBSA and 22 µM Cl- on 
ORR activities of Pt/C in O2 saturated 0.1 M HClO4, rotating WE at 
1600 rpm. The Left hand side figure depicts the ring and disk currents 
during ORR and the right hand side figure shows the corresponding 
fraction of hydrogen peroxide formation. The black line shows ORR in 
clean electrolyte, while the red line shows the LSVs in contaminated 
electrolyte and the red line shows the recovery in a clean electrolyte 
after rinsing the contaminated electrode in DI water. 
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Figure 5.14. Comparison of normalized available ECA (%) and current 
0.9 V (%) in pristine electrolyte with contaminated electrolytes 
(4MBSA, Cl-, and mixture of 4MBSA and Cl-). 
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Chapter 6. Study of the effects of organic compounds on PEMFC 

electrode 

In this chapter the detrimental effect of leachates from off-the-shelf BOP 

materials (all categorized as assembly aids), which may be used in PEM fuel cells, on 

electrode was correlated to the contamination from the organic and inorganic species in 

the leachates. In this study the organic compounds (aliphatic, aromatic and polumeric) in 

the adhesives (identified in GCMS) were investigated for their role on the degradation of 

catalyst layer (carbon supported Pt) and ionomer by recording the loss in electrochemical 

surface area (ECA) and oxygen reduction reaction (ORR) currents using thin film 

rotating disk electrode (TF-RDE) method. The organic contaminants (model compounds) 

adsorb on Pt sites of the electrocatalyst, reducing the surface area available for 

electrochemical reactions and the oxygen reduction reaction activities. The ECA loss was 

more in case of aromatics than that of aliphatics, as the contaminant molecules block the 

Pt sites. For higher dosage of contamination, the oxygen reduction goes through 2 

electrons pathway instead 4 electrons and generates peroxide which was detected at the 

ring during ring rotating disk experiment. Recovery of the lost ECA and ORR activities 

was partially possible by holding and cycling to a higher potential well in the range of an 

operating fuel cell. 

The additional information on the methodology and background studies can be 

found in appendices D, F and G. 
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6.1. Introduction 

Polymer electrolyte membrane fuel cell (PEMFC) converts chemical energy 

generated due to combination of hydrogen and oxygen directly to electrical energy which 

can used to run vehicles (97). In pursuit of commercialization of PEMFC in vehicles 

replacing the internal combustion engines, a large number of studies have been conducted 

in last one decade on fundamental hydrogen oxidation reaction (HOR) in anode and 

oxygen reduction reaction (ORR) in cathode. Overpotential losses of ca. 400mV were 

observed in proton exchange membrane (PEM) fuel cell cathodes due to poor oxygen 

reduction kinetics (74). Since the carbon supported Pt catalysts used in a fuel cell is 

susceptible to contamination from air such as SO2 (17, 44, 56, 63, 98-100) in cathode and 

from fuel (40, 101-103) in anode it was necessary to conduct comprehensive studies to 

document the severity of contamination in both anode and cathode and explore the 

mitigation strategies which are cost effective. The structural materials, conduits and hoses, 

coolants, adhesives and lubricant used in a fuel cell also contribute to the contamination 

of the catalyst (both anode and cathode side) , change in the hydrophobicity of the gas 

diffusion layer, membrane degradation resulting in poor performance of the fuel cell. 

These materials are often chosen from the off-the-shelf materials to keep the cost of 

manufacturing low, and therefore eliminating the source of contamination may not be 

cost effective for the manufacturers of those materials. This study strives to provide an 

appropriate and all-inclusive study of some of the organic compounds found in the one 

week soak of leachants of the assembly aids (adhesives, thread lockers, grease etc.) used 

in a fuel cell. These organic compounds can come from the solvent, antioxidants, 

plasticizers, filling for the assembly aids and degrade or combine among themselves to 
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form the organic compounds under investigation. When the contaminants reach the 

catalyst layer, they get readily adsorbed on the Pt sites preventing them to participate in 

oxygen reduction reaction (O2+ 4H++ 4e- → 2H2O) and HOR (H2 → 2H+ + 2e-). Since 

catalyst loading at the cathode (where ORR takes place) contributes more to the overall 

cost effectiveness of the fuel cell stack than anode (where HOR takes place) catalyst 

(0.05 mgPtcm-2 at anode vs. 0.35 mgPtcm-2 at cathode (74)), this study focuses on 

evaluating the ORR activities of Pt/C catalyst in presence of the organic contaminants. 

The ORR reaction is usually a four electron process resulting in formation of 

water. For this reaction to take place, the oxygen molecule must adsorb on the Pt sites 

where the O-O bond breaking occurs resulting to oxygen reduction reaction. ORR is 

associated with 0.35 to 0.4 V overpotential losses due to kinetic limitations (52, 104).  So 

for the development of Pt electrocatalyst, understanding the mechanism of contamination 

at the catalyst surface is necessary. The contamination of Pt electrode is a complex 

process, since the contaminants can modify the intrinsic catalyst properties. 

The reaction kinetics of ORR depends on the surface coverage of Pt by different 

species such as underpotentially deposited hydrogen (Hupd), adsorbed oxygenated species 

(OHad) and anions from supporting electrolyte (62, 105, 106). Therefore the ORR activity 

only depends on the available Pt surface on the electrode (53). To develop commercially 

viable catalyst with high ORR activities, understanding the fundamentals of 

contamination on Pt/C using ex-situ methods like rotating disk electrode is important. 

This study has been supplemented with ring-rotating disk electrode (RRDE) study 

as well. The activity of oxygen reduction reaction decreases with increasing adsorbed 
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contaminants. From previous studies (53) it is known that decrease in disk current with 

simultaneous increase in ring current strictly reflects two electron reduction of oxygen 

and formation of peroxide. This phenomenon occurs in presence of impurity molecules 

(15) due to unavailability of Pt sites for O-O bond breaking. 

Recovery of the ECA and ORR activity loss was also performed on the 

contaminated electrodes in this study. Ex-situ RDE technique was chosen to isolate the 

impact of contaminants on ORR activities and catalyst poisoning, which was not possible 

in-situ (in a PEMFC). In-situ studies has revealed the slow kinetics at the cathode 

(compared to anode) is greatly influenced by activation losses due to presence of 

contaminants (air borne and fuel, chemical degradation products from seals, coolants, 

assembly aids and plastics) in the fluid streams in addition to other factors like catalyst 

layer characteristics (107). Similarly the ohmic losses originating from the electrolyte 

(membrane) can also be predisposed to contaminations from alkali and alkaline earth 

metal ions (displaces protons of ionomers decreasing proton conductivity) altering the 

proton conducting properties of the MEA (108). The integral components of a fuel cell 

like membrane electrode assembly (MEA) could also serve as a source of contamination. 

As delineated in previous studies, the membrane degradation product can often cause 

poisoning of the electrodes by forming peroxide or peroxide radicals (107). Various 

similar sources can contribute to the efficiency loss and or degradation of the fuel cells. 

Liquid phase contamination is one of major concern due to its role in poisoning the 

catalyst thereby increasing the chances of poor performance in a PEMFC. 

In this paper, experimental data was obtained and analyzed to gather insights on 

fundamental understanding contamination from organic compounds on PEMFC electrode. 
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When a molecule is adsorbed on the surface, the nature of adsorption is determined by 

the bonding and electronic state of the molecule. With no or very little change in 

electronic structure of the molecule the bond between the molecule and the surface is 

weak and it is called physio-adsorption. Or the bonding can be strong making it a chemi-

adsorption. During chemi-sorption there is electronic interaction between the molecule 

and the metal. Most of the chemi-sorption takes place through Langmuir-Hinshelwood 

kinetics. 

Monitoring adsorbates on the surface of a catalyst can offer great insight to the 

reactions that cause contamination and could help in the area of catalyst development. 

Also the recovery procedure could help mitigate the effect of the organic contaminants to 

the Pt electrocatalyst. 

6.2. Experimental 

The rotating disk method was employed in all the measurements, using three 

electrodes cell setup. The electro-chemical cell setup was cleaned in concentrated H2SO4 

for 24 hours followed by cleaning in concentrated H2SO4 and nochromix solution for 

another 24 hours. After the acid cleaning, the cell setup was boiled in DI water for 2 

hours. 

6.2.1. Catalyst ink and thin film electrode preparation ORR on Pt/C 

7.4 mg of TEC10V50E (Vulcan carbon) was dissolved in 7.6 ml DI water and 2.4 

ml IPA in a small glass vial. 40 µl of Nafion (5wt%) was added to the vial. The ink 

solution was sonicated in an ice bath for 40 min. The ice was changed every 3-4 minutes 

as it started melting. A 5mm diameter glassy carbon tip on Teflon cylinder (Pine 
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Instruments) was chosen as the electrode. It was polished using 0.05 μm alumina polish 

suspension and a few drops of DI water on a Buehler MicroCloth for 5 minutes followed 

by rinsing in DI water. The electrode was then sonicated in Nanopure water (18MΩ) and 

diluted isopropyl alcohol (Sigma Aldrich) respectively for 15 minutes each. After 

sonication, 10 µL of ink was dispensed carefully at once on the electrode glassy carbon 

tip to build an evenly dispersed thin film (for less mass transport resistance). The tip was 

then dried in an oven at 400C for 20 min. the Pt loading was 18 μgPtcm-2. 

6.2.2. E-chem Cell preparation 

The electrochemical glassware was filled with 0.1 M Perchloric acid from GFS 

chemical (maximum level of Chlorides of 0.00001%). A Pt wire (inside a glass insert, 

connected to hydrogen gas) serves as the reference electrode (Reversible Hydrogen 

Electrode). The counter electrode was also made of Pt wire and gauge (spot welded on 

the wire). N2 gas was purged during baseline CV and while contaminating to remove 

excess oxygen from the electrolyte. The N2 or O2 (research grade purity, by Air products) 

gas goes through water trap before entering the cell to eliminate any other contaminants. 

6.2.3. Preparation of the solutions with organic contaminants 

The stock solutions of the organic compounds were prepared by diluting the 

organic compounds purchased from Sigma Aldrich. The purity of the purchased 

compounds was 99%. 

6.2.4. RDE experiments protocol to measure ECA and ORR 

Figure 2 shows that there were three essential parts of the experimental procedure: 

baseline, contamination, and recovery. Each electrode was subjected to the baseline first, 
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followed by the contamination part, and finished with the recovery part.  In each part, the 

ECA and ORR activities were measured.  All experiments were performed at room 

temperature in 0.1M HClO4 using a TF-RDE method. The details of experimental 

procedure including electrode preparation and conditioning were reported in (59, 70).The 

contamination part was repeated three times for three different concentrations of the 

leachate. Since kinetics data were extracted from the ORR polarization curves, the 

background of ORR was recorded in N2 gas saturated electrolyte. 

For the baseline part, thin film electrodes were prepared as described in (59, 70) 

and mass activities were calculated and used to ensure quality of the electrode in terms of 

reproducibility of the catalysts. Conditioning involved 100 cycles from 0.025 to 1.2 V at 

100 mV/s after a 20 min N2 purge while the TF-RDE was rotated at 2500 rpm.  The full 

baseline CV was obtained from three cycles between 0.025 and 1.05V at 20 mV/s under a 

N2 blanket with no rotation. This full baseline allows calculation of the ECA according to 

typical procedures reported in 16, 17. In addition a partial baseline CV was obtained from 

three cycles between 0.025 and 0.50 V at 20 mV/s under a N2 blanket with no rotation. 

Again the ECA was calculated and compared with the ECA from the full baseline CV. 

These two ECAs were within ±3% of each other with smaller ECA consistent with the 

fact that partial scans do not go higher up to the potential where PtO can be formed. Note 

the partial scan was used to be consistent need to limit the potential range for the 

contaminated ECA.  Next, the WE was polarized at 0.4V for 7 min while purging with O2 

and rotating at 2500 rpm. Hydrodynamic voltammetry for the ORR current measurement 

was conducted by recording linear sweep voltammetry at 20 mVs-1 in an O2 blanketing 

environment on the electrolyte and rotating at a speed of 1600 rpm. Finally, the 
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electrolyte was saturated by sparging N2 for 7 min then a background ORR scan was 

obtained in N2 saturated electrolyte from -0.01 to 1.0 V at 20 mVs-1 while rotating at 

1600 rpm. The sweep rate and rotation speed were the same as for the N2 baseline. The 

background was later subtracted from the ORR LSVs to correct for the pseudo capacity 

currents. 

For the contamination part of figure 2 the initial leachate solution of known TOC 

concentration was 1.8 μM on a carbon basis which was added with a pipette directly to 

the electrolyte while purging the RDE cell with N2 and while holding the working 

electrode at 0.4 V (to avoid any electrochemical change of the contaminant before it 

reached the Pt sites) and rotating at 2500 rpm. Then the ECA was measured from the 

cyclic voltammograms (full and partial, performed same way as described above for the 

baseline part). Next, the WE at 0.4V during a 7 min urge of O2 during rotation at 2500 

rpm followed by recording of linear sweep voltammetry (ORR current) at 20 mVs-1 with 

O2 blanketing on the electrolyte and rotating at a speed of 1600 rpm. Note that the 

electrolyte was saturated by sparging N2 for 7 min then a background ORR scan was 

obtained in N2 saturated electrolyte from -0.01 to 1.0 V at 20 mVs-1 while rotating at 

1600 rpm. The linear sweep voltammetry in N2 is measured to subtract the background to 

obtain kinetic data (Tafel slope). Then the required volume of leachate was added to the 

1.8 μM contaminated electrolyte to achieve 18 and 180 μM carbon concentration and the 

contamination part was repeated. 

Recovery part includes the potentiostatic hold at higher potentials followed by 

potential cycles from the holding potential (0.75 V, 0.85 V, 0.95 and 1.05 V) to low 

potential (0 V) finally to 0.5 V. The partial CVs allowed calculating ECA after each hold, 
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presenting the % of ECA recovered due to the holds. Finally recovery CV (3 cycles of 

full CVs - 0.025 V to 1.05 V at 20mVs-1) and ORR (-0.01 to 1.0 V at 20mVs-1at 1600 

rpm) was performed using the same procedure as described in the baseline section. The 

linear sweep voltammetry in N2 is measured as the background to obtain kinetic data 

(Tafel slope) after recovery. 

6.2.5. Determination of time taken by contamination molecules to reach Pt surface 

To determine the time taken by the organic molecules to reach the surface of the 

electrode, the CVs were performed at 100mV/s and the electrolyte was contaminated at 

1.05 V in a separate set of experiments with Loctite® 39916. Completion of one full 

cycle (1.05 V→0.025 V→1.05 V) requires 20 s. Therefore, after injecting the 

contaminant at 1.05 V, time taken by the contaminants to reach electrode surface can be 

calculated by counting the number of cycles before observing any impurity effect on the 

CV scan. 

6.3. Results and discussions 

6.3.1. Characterization of the leachant using GCMS 

Systematic identification and selection of model compounds provide the basis for 

ex-situ RDE experiments to quantify effects of these system contaminants ECA and ORR 

currents loss which leads to determining the potential degradation mechanisms. 

Lubricants, adhesives and thread locks/sealants fall under the broad category of 

assembly aids. There are five categories of materials tested and reported in my previous 

paper, such as urethane, epoxy, fluorocarbon, silicone and acrylic groups. These materials 

were leached in polypropylene bottles at 900C for a week and the leachates were analyzed 
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using GCMS to identify the organic species as furnished in table 6.1. For detailed 

leaching process, please refer to my previous paper. 

6.3.2. Structure of the organic contaminants 

The assembly aid materials chosen for this study are commercially available (off-

the-shelf) with wide range of properties and have specific functions in a fuel cell stack 

operation. These materials are not specifically designed for fuel cell applications and 

hence they may contain additives that are not needed for fuel cell applications. The cost 

of off-the-shelf assembly aids vary but are within the range of affordability of a fuel cell 

stack manufacturer. The contamination effect of the assembly aids including the 

adhesives and lubricants has been expansively described in my previous paper. These 

assembly aids were analyzed using GCMS (109), ICP-OES, and IC to provide a 

qualitative insight on their organic, inorganic and anionic components. The GCMS 

identifies the most prevalent organic compounds using NIST library and fairly specifies 

the source of contamination. The assembly aids were soaked at an elevated temperature 

for a week and the solution separated from any solid particle at the end of the soak was 

tested by GCMS and found to contain the organic compound as described in table 1. All 

the component organic compounds found in those assembly aids are present as solvent, 

filler, antioxidants, pigments, flame retardants, product of polymer degradation and 

residues (109). The extent of contamination of the assembly aids varies with the surface 

area of contact with the gases inside the fuel cell. After determination of this subset of 

model compounds, pure standards of each were purchased from Sigma-Aldrich. One 

assembly aid was down selected for further probing from each group of the assembly aids 

and analyzed using GCMS. The organic compounds listed in table 1 were referred to as 
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model compounds and tested for their role in contamination during oxygen reduction 

reaction in this paper. 

6.3.3. Surface chemistry between Pt and organic molecules 

The contaminant organic molecules Pt sites depending on the crystal structure. 

Carbon supported electrocatalysts mainly consists of Pt (111) and Pt (110), and the 

organic molecules can adsorb to the surface in three general positions – atop, bridge, or 

multi-fold (Figure 6.3) (110). 

During the atop configuration the entire molecule covers a Pt site), during bridge 

configuration the pi bond (electron donation from the pi bond) or the side chains spread 

over two Pt sites side by side and during the threefold the pi bond and or the side chains 

spread over three Pt sites side by side occur as shown in the figure 6.3. Depending on this 

orientation, one single molecule of an organic compound can reduce the original 

available Pt sites of the catalyst by one or by two or by three. ORR needs O-O bond 

breaking by two Pt sites. Therefore the adsorption of contamination molecules not only 

decreases the Pt sites but also inhibits oxygen reduction reaction (O2+ 4H++ 4e- → 2H2O). 

The surface chemistry between Pt sites and organic compounds depends on the 

potential of the electrode. Electrocatalysis happens in two distinct parts: first, a molecule 

adsorbs on the surface and forms a bond with the Pt (chemical adsorption). Secondly, the 

molecule must exchange a charge with the metal surface by changing its chemical 

structure (electrochemical reaction). However, catalyst sites of a metal surface are always 

covered with adsorbed species (either water or adsorbate ions from the electrolyte), 

where the water molecules are denoted by blue circles and the contaminant by red circle. 
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When perchloric acid is used as an electrolyte due to weaker adsorption strength of 

perchlorate ions, the adsorption of organic molecules starts as early as at 0.2 V. If no 

potential is applied to the electrode, the surface will stay covered by water molecules and 

the adsorption of other molecules is repressed. When more positive potential is applied to 

the electrode adsorption of the water molecules becomes less favored in presence of 

organic polar molecules and gradually the organic molecules replace the water molecules 

and attach to the Pt sites). At these free catalyst sites other molecules, e.g. organic 

compounds, can adsorb, however, the electrochemical reaction cannot occur until the 

electrochemical potentials of the electrons in both phases are equal. Therefore, even if the 

potential of the electrode is positive enough to allow the adsorption to occur, it is not 

necessarily suitable for the electrochemical reaction. When more positive potentials than 

PZC are applied, organic molecule will adsorb on the Pt electrode with more negative 

part towards the metal surface. 

In this study definitive proof of adsorption of the organic molecules will be 

presented at a potential upto 1.05V, but the occurrence of any parallel electrochemical 

reaction (i.e. exchange of electrons from the organic to the metal electrode) may not be 

observed in all cases. As suggested by a study conducted by A. Santasalo (111), the 

chances of contaminant molecule to attach to Pt (111) and Pt (100) are much higher than 

Pt (110). Since Pt/C resembles in behavior that of Pt (110 and Pt (111), we will see a 

higher affinity of the organic molecules towards Pt than as can be seen towards poly 

crystalline Pt. 
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6.3.4. Effect of aliphatics on electrochemical surface area determined by CVs 

The CV was measured after injecting the leachant and the model compound in 

two different set of experiments while the electrode was held at 0.4 V (vs. RHE). Organic 

molecules are neutral (not positively or negatively charged like ions), and therefore they 

adsorb very well near the PZC of the metal electrode. At PZC, the water or any adsorbed 

species on the electrode is the least layered. So it is easy to displace the initial adsorbed 

species by the organic molecules. As mentioned before the PZC of Pt is 0.35 V so at 0.4 

V organic molecules can adsorb on the electrode. Also at 0.4V the original 

uncontaminated CV shows adsorption/ desorption peaks. Between 0.4 to 0.5V the region 

is known as double layer region where no oxidation or reduction reactions take place. 

Therefore holding the working electrode at 0.4 V ensures the foreign contaminant 

molecules will not undergo any electrochemical change and will therefore, manifest the 

impact of contamination on consecutive cyclic voltammetric scans. 

Two aliphatic compounds- 2-(2-ethoxyethoxy) ethanol and 2-(2-ethoxyethoxy) 

ethanol acetate were chosen for testing on the Pt/VC using thin film RDE. Each of the 

compounds contains two ethoxy groups (-CH2-O-CH2-). 

No additional peaks were found in the CVs performed from 0.025 to 0.5 V but for 

full scans (0.025 to 1.05V) some additional peaks were observed. As discussed before the 

hydrophobicity of the organic molecules assist the adsorption process, but due to the 

large size of the molecules (bulk hindrance), the adsorption process slows down after the 

initial rapid phase. It is experimentally proven in the previous section that highest amount 

of adsorption and therefore decrease in ECA took place in first 5 minutes of injection. 

The CVs were performed at room temperature. The CVs before adding (baseline) and 
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after adding contaminants (at the end of the experiments) are shown in figures 6.4 and 6.6. 

It is clear from these figures that electrochemical surface area decreased after addition of 

the model compounds. The contaminants were injected at an increment of an order of 

magnitude of strength. The final dosage calculated inside 145 ml of electrolyte were 

0.005mM, 0.05mM, 0.5mM, 1mM, 5mM and 20mM. For the initial lower concentration 

no interesting feature were found. However when the strength of the model compounds 

increased different features were observed in the contamination CVs. 

The peak at 0.8V during the first cycle of the CV was due to oxidation of DME 

(dimethoxy ethane, C4H10O2). The DME comes from the hydrolysis of the DEGEE and it 

is oxidized at 0.8 to form ethanol, which adsorbs on Pt as a contaminant (112). 

The full cyclic voltammetric scans were performed for higher concentrations of 

the contaminants (0.1 M, 0.5M and 20 mM). In the uncontaminated solution the cyclic 

voltammogram shows peaks at 0.1 V (hydrogen adsorption/ desorption on Pt (111)), and 

at 0.85 V (Pt oxidation and Pt-O reduction) which are the key features observed in a CV 

conducted in 0.1 M perchloric acid. After adding the organic compounds (final 

concentration in 145 ml perchloric acid being 0.1 M) a peak at 0.8 V (anodic) was 

observed at the first cycle of the scan. The peak disappears in the consecutive scans and 

reappears when the concentrations of the organic compounds were increased to 0.5 M 

(final concentration inside the cell). But when the concentration was increased even more 

the peak didn’t come back. At 20mM concentration, the DEGEE CV showed an 

interesting feature. No reduction was current observed at 0.8-0.85 V (Pt-O reduction 

region). The CV after the double layer region shifted above the 0 current, making the 

entire process contributing to oxidation current. This feature was not observed in case of 
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DGMEA, although there was an upward shift of the CV after double layer region, not as 

prominent as seen in case of DEGEE (figure 6.4, 6.5). 

The DME electrooxidation occurs through hydrolysis first and then by 

dissociative adsorption as given below: 

The last aliphatic compound tested was Polyethylene Glycol Dimethacrylates 

(PEG). It is essentially a polymer containing repeating -OCH2CH2- (ehtoxy) groups 

(average molecular weight = 750). This compound showed highest loss in ECA 

compared to the other compounds. 

6.3.5. Effect of aromatics on electrochemical surface area determined by CVs 

Four aromatic compounds were tested for their impacts on the Pt/VC catalyst on 

room temperature. Among them 2,6-diamino toluene (2,6-DAT) or methyl 

benzenediamine contain –NH2 (amine) group. The amine groups adsorb on the Pt through 

the lone pair of electrons on N atom. Both are primary amines and are inclined to 

nucleophilic substitutions. 2,6-DAT has two amine groups attached in the meta positions 

of the ring. 2,6-DAT has two –NH2 groups, they also bonds with Pt same way. In 

presence of electron withdrawing group-CH3, 2-6-DAT molecule is stabilized increasing 

the basicity. Therefore, in weak acidic medium it reacts and anodical and cathodical 

peaks centered at around 0.5V was seen due to quinine-hydroquinone reversible reaction 

of the amine groups (figure 6.7). This peak was also observed in the earlier research with 

aromatic amines. One sharp peak at 1.05V was observed which is due to oxidation of the 

quinone-hydroquinone which was produced on Pt. The peak at 0.8V (Pt oxidation on Pt 
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(111)) was suppressed in presence of contaminants. The recovery showed increase in 

Hupd region, but no recovery in the Pt oxide or reduction regions (113). 

The peaks at 0.14 V and 2.2 V which is a common feature of CVs on Pt disappear 

in presence of contaminant molecules. 

The contaminant effects of two aromatic compounds having –OH. For the p-tert 

butyl phenol the –OH group is directly attached to the aromatic ring, but for benzyl 

alcohol, the –OH group is attached to the alkyl group, next to the aromatic ring. Due the 

size of the molecule both of them show almost same loss of ECA. There is a small 

reversible around 0.65 V. 

6.3.6. ECA loss due to contamination 

The loss of ECA is higher for the aromatic compounds than aliphatic compounds. 

Due to addition of two aliphatic compounds 2-(2-ethoxyethoxy) ethanol and 2-(2-

ethoxyethoxy) ethanol acetate at high concentration as 20mM, the ECA loss was up to 50 

± 10%. The ECA losses (figure 6.9) in case of aromatics were observed to be steeper than 

any aliphatics, with an exception of dimethacrylate. It is hypothesized that the loss of 

ECA depends on the size of the molecules. Since dimethcrylate is a long chain polymer 

when it adsorbs on Pt it occupies more than one site. It may also be due to affinity of 

dimethcrylate to fuse together and form longer chains in weak acidic conditions. 

6.3.7. Example of recovery of ECA 

Recovery was performed by holding the electrode in a clean electrolyte at higher 

potentials. This helped the contaminant molecules to oxidize and or desorb from the Pt/C 

electrode surface. Prior to cyclic voltammetric scans, the working electrode was held at 
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0.75V, 0.85V, 0.95V and 1.05V. The partial scans were started at the potential the WE 

had been held. With each scan from a higher potential, the electrochemical surface area 

started recovering gradually (figure 6.10). 

6.3.8. Contamination effect on oxygen reduction reaction (ORR) activities of Pt/C 

The baseline ORR curve was performed prior to the contamination in a clean O2 

saturated 0.1 M HClO4 at 20 mVs-1, while rotating the working electrode at 1600 rpm. 

The poisoning was performed in two separate experiments. In the first set of experiments 

three concentrations (5 x 10-6 M, 5 x 10-5 M, 5 x 10-4 M) of organic contaminant solution 

were added. In the second set of experiments three higher concentrations (1 x 10-3 M, 5 x 

10-3 M, 2 x 10-2 M) of organic contaminant solution were added. 

The initial ORR polarization curve had a diffusion limiting current of -5.7  

mAcm-2. The first scan of ORR at a contaminant concentration of 5x10-4 M shows 

decrease in onset potential and diffusion limiting current. The higher the contamination 

the diffusion limiting current region loses the feature of the flat region between 0.2 and 

0.6 V. Also the current density at 0.9 V decreases with contamination. The diffusion 

limiting current becomes as low at -3.5 mAcm-2, with a similar decrease in current at 

0.9V with higher overpotential losses. The recovery scan in the clean electrolyte almost 

overlaps the baseline scan in the mixed kinetic-diffusion region (0.8 to 1 V) and the 

diffusion limiting current also increases to -5.4 mAcm-2 recovering the flat section at the 

diffusion controlled region. The decline in diffusion limiting current and current at 0.9 V 

was the most common feature in the ORR polarization curves after contamination (30). 

Aliphatic compounds: 
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2-(2-ethoxyethoxy) ethanol 

The ORR currents after adding 2-(2-ethoxyethoxy) ethanol is given in figure 6.11. 

No peroxide formation was observed during the ORR experiments. 

2-(2-ethoxyethoxy) ethanol acetate 

The ORR currents after adding 2-(2-ethoxyethoxy) ethanol acetate is given in 

figure 6.12. The ORR polarization curves after adding 2-(2-ethoxyethoxy) ethanol acetate 

show similarities in contamination features of the diffusion limiting currents, current at 

0.9 V. 

Polyethylene glycol dimethacrylates 

The ORR polarization curves after adding polyethylene glycol dimethacrylates is 

shown in figure 6.13. The limiting current between 0.3 to 0.5 V and the current at 0.9 V 

decreased and the ORR changed from 4 electrons to 2 electrons pathway producing 

peroxide. This peroxide was detected in the ring of a ring disk electrode and the fraction 

of peroxide formation increased with potential. This feature is unique to the polymer and 

was not observed in case of the two ethoxy compounds tested earlier. The correlation 

between the ECA loss and ORR currents observed during the contamination experiment 

is given in table 6.4. 

Aromatic compounds 

2,6 DAT or dimethyl toluene 

The ORR polarization curves after adding 2,6 diamine toluene is shown in figure 

6.14. The limiting current between 0.3 to 0.5 V and the current at 0.9 V decreased and the 
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ORR changed from 4 electrons to 2 electrons pathway producing peroxide. This peroxide 

was detected in the ring of a ring disk electrode and the fraction of peroxide formation 

increased with potential. This feature is unique to the polymer and was not observed in 

case of the other aromatic compounds tested earlier. 

The correlation between the ECA loss and ORR currents observed during the 

contamination experiment is given in table 6.5. 

Benzyl Alcohol 

The initial ORR curve has a well-defined diffusion limiting current region 

between 0.2 and 0.6 V, followed by a kinetic-mass controlled region with a current 2.4 

mAcm-2 (corrected for oxygen partial pressure) at 0.9 V. Post-contamination, the current 

at 0.9 V and limiting current decreases as shown in figure 6.15. 

p-tert butyl alcohol 

The initial ORR curve has a well-defined diffusion limiting current region 

between 0.2 and 0.6 V, followed by a kinetic-mass controlled region with a current 2.4 

mAcm-2 (corrected for oxygen partial pressure) at 0.9 V. Post-contamination, the current 

at 0.9 V and limiting current decreases as shown in figure 6.16, as observed in case of 

benzyl alcohol. No significant amount of peroxide was detected above 0.3 V for either of 

benzyl alcohol or p-tert butyl alcohol. 

6.4. Conclusions 

This study showed that contaminants found in the leachants used in PEM fuel cell 

have detrimental effect of ORR activities and ECA. Analytical diagnostic tools were used 
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to qualitatively determine the organic components of the one week soak of the assembly 

aids at elevated temperature. Even though the organic indentified in via GCMS and other 

techniques are not documented to be present in the assembly aids, the possible 

explanation of existence of trace amount of organics in the leachants can be explained 

from the starting materials and process of synthesis. The effects of contaminants are three 

fold. In addition to reducing the catalyst area available for electrochemical reactions, it 

reduces the activities (mass and area specific) leads to performance loss and long term 

poisoning can lead to membrane degradation and ultimately failure of a fuel cell stack. 

Also the manufacturing cost of the stack increases if the assembly aids are to be 

specifically designed for fuel cells instead of “cheaper” off-the-shelf materials which are 

commercially available for use in more than one industry. 

The testing of some of the very common organic compounds resulting from the 

degradation of the additives, monomers, fillers, antioxidants etc used in the assembly aids, 

gives an insight on the overall poisoning mechanism. The ORR activities decreases, 

resulting in poor catalyst utilization in an operating fuel cell. 

The organic compounds tested were both aromatic and aliphatic. The aromatic 

compounds with strong nuclephilic groups (like –NH2) adsorb on the Pt with N atoms or 

the aromatic ring (pi-bonds) and ECA loss depends on the size or the bulk of the 

molecule. The aliphatic compounds tested contained ethoxy group. The oxygen atom of 

the ethoxy group is very reactive as it has two lone pairs of electrons. For that reason, the 

highest amount of contamination was observed when polyethylene glycol 

dimethacrylates which contains repetitive chains of ethoxy groups. 
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The recovery procedure recommended that holding at higher potential can recover 

the lost ECA as the adsorbing molecules desorbed from the Pt sites at higher voltages. 

Therefore potential cycling to a higher voltage may be a promising technique for 

removing contamination from a fuel cell. Also cleaning the catalyst with DI water can 

partially recover the lost surface area. 
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Table 6.1. Organic (aromatic and aliphatic) compounds aids tested in this paper identified 
using GCMS in the leachates of the assembly 

 

Chemical Description Name GCMS: Liquids TOC (ppm)

Urethane 
3M® 4000 fast cure 

white 
A B C D 1280 

Silicone 
3M® 

# 8664 black 
A B C 

 
197 

Urethane Loctite® 39916 E F D 
 

266 

Acrylic 
Loctite® 

# 567 
G H I  750 

Epoxy Reltek® Bond-IT B45 C J K 
 

1695 

PFAE/PTFE Krytox® XHT-SX None Detected 10 

 

A = Ethanol, 2-(2-ethoxyethoxy) 

B = Ethanol, 2-(2-ethoxyethoxy)-acetate 

C = Benzyl Alcohol 

D = Methyl-Benzenediamine 

E = p-toluenesesulfonamide 

F = Butyric acid N'-m-tolyl-hydrazide 

G = 2-Propenoic acid 
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H = 2,2'-[oxybis(2,1-ethanediyloxy)]bis-Ethanol 

I = Diethylene glycol dimethacrylate 

J = [p or m]-tert-butyl- Phenol 

K = Benzaldehyde 
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Table 6.2. Analysis of current and ECA loss to demonstrate the effect of contamination 
due to addition of 2-(2-ethoxyethoxy) ethanol. Platinum ECSAs and ORR currents 
determined before and after contamination, for thin films of 46 wt.%Pt/VC, 17.4 μgPt 
cm−2, 0.1M HClO4, 25°C. 

 
ilim Available 

ilim % 
i0.9V

Available 
i0.9V % 

Available ECA % Ionomer effect

baseline 5.9 100 2.4 100 100 0 

1E-3 M 5.1 86 1.3 52 53 1 

5E-3 M 4.8 82 1.2 49 49 1 

2E-2 M 4.5 75 1.0 42 48 6 

recovery 5.3 90 1.9 78 78 0 
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Table 6.3. Analysis of current and ECA loss to demonstrate the effect of 
contamination due to addition of 2-(2-ethoxyethoxy) ethanol acetate. 
Platinum ECSAs and ORR currents determined before and after 
contamination, for thin films of 46 wt.%Pt/VC, 17.4 μgPt cm−2, 0.1M 
HClO4, 25°C 
 

ilim Available 
ilim % 

i0.9V 
Available 

i0.9V % 
Available 
ECA % 

Ionomer 
effect 

baseline 6 100 2.5 100 100 0 

1E-3 M 4.9 82 1.3 52 53 1 

5E-3 M 4.8 80 1.2 48 50 2 

2E-2 M 4.3 72 1.0 40 43 3 

recovery 5.3 88 1.8 71 71 0 
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Table 6.4. Analysis of current and ECA loss to demonstrate the effect of 
contamination due to addition of PEG dimethacrylate. Platinum ECSAs and 
ORR currents determined before and after contamination, for thin films of 46 
wt.%Pt/VC, 17.4 μgPt cm−2, 0.1M HClO4, 25°C 

 
ilim Available 

ilim % 
i0.9V 

Available 
i0.9V % 

Available 
ECA % 

Ionomer 
effect 

baseline 5.8 100 2.10 100 100 0 

1E-3 M 4 69 0.54 26 31 5 

5E-3 M 3.6 62 0.32 15 28 12 

2E-2 M 3 52 0.26 12 26 14 

recovery 4.35 75 1.06 48 50 2 
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Table 6.5. Analysis of current and ECA loss to demonstrate the effect of 
contamination due to addition of 2,6-DAT. Platinum ECSAs and ORR currents 
determined before and after contamination, for thin films of 46 wt.%Pt/VC, 17.4 
μgPt cm−2, 0.1M HClO4, 25°C. 

 
ilim Available 

ilim % 
i0.9V 

Available 
i0.9V % 

Available 
ECA % 

Ionomer 
effect 

baseline 5.8 100 2 100 100 0 

1E-3 M 4.5 77 0.8 37 38 1 

5E-3 M 3.6 62 0.4 20 33 13 

2E-2 M 2.8 48 0.0 2 32 30 

recovery 4.7 81 0.8 40 43 3 
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Table 6.6. Analysis of current and ECA loss to demonstrate the effect of 
contamination due to addition of benzyl alcohol. Platinum ECSAs and ORR 
currents determined before and after contamination, for thin films of 46 
wt.%Pt/VC, 17.4 μgPt cm−2, 0.1M HClO4, 25°C 
 

ilim Available 
ilim % 

i0.9V 
Available 

i0.9V % 
Available 
ECA % 

Ionomer 
effect 

baseline 5.9 100 2 100 100 0 

1E-3 M 4.3 73 0.7 35 44 9 

5E-3 M 3.8 64 0.6 32 41 9 

2E-2 M 3.5 60 0.6 28 38 10 

recovery 5.3 90 1.4 70 67 -3 
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Table 6.7. Analysis of current and ECA loss to demonstrate the effect of 
contamination due to addition of p-tert butl alcohol. Platinum ECSAs and 
ORR currents determined before and after contamination, for thin films of 
46 wt.%Pt/VC, 17.4 μgPt cm−2, 0.1M HClO4, 25°C 
 

ilim Availabl
e ilim % 

i0.9V 
Availabl
e i0.9V % 

Availabl
e ECA % 

Ionomer 
effect 

baseline 5.9 100 2.1 100 100 0 

1E-3 M 4.3 73 1.0 48 48 0 

5E-3 M 4.0 68 0.8 37 44 7 

2E-2 M 2.9 49 0.7 31 41 10 

recovery 5.3 90 1.7 79 79 0 
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Figure 6.1. Schematic of the experimental protocol to investigate the impact of the 
organic contaminants found in the 1 week DI water soak of the assembly aids used 
in a PEM fuel cell, on loss of ECA and ORR activities of Pt/VC using three 
electrodes TF-RDE at room temperature. 
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Figure 6.2. Structures of the organic compounds studied in this paper 
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Figure 6.3. Schematic of the configurations of the 
adsorbed organic molecule on the Pt nanoparticles (Pt 
(111)). 
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Figure 6.4. Example of the change in surface coverage by 2-(2-ethoxyethoxy) ethanol, 
and 2-(2-ethoxyethoxy) ethanol acetate (loss of ECA due to adsorption of contaminant 
molecules on Pt sites) with CV cycles from 0.025 to 1.05 V at a scan rate of 20 mV/s as 
measured under the Hupd normalized by initial available surface in the clean electrode. 
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Figure 6.5. The peak at 0.8 V is a characteristic feature of both 2-(2-ethoxyethoxy) 
ethanol, and 2-(2-ethoxyethoxy) ethanol acetate, which is attributed to the 
adsorption of –CHO species on Pt after following a series of steps involving 
electrochemical reactions 

  



www.manaraa.com

 

207 

 

Figure 6.6. The effect of polyethylene glycol dimethacrylates (loss 
of ECA due to adsorption of contaminant molecules on Pt sites) 
with CV cycles from 0.025 to 1.05 V at a scan rate of 20 mV/s as 
measured under the Hupd normalized by initial available surface in 
the clean electrode. 
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Figure 6.7. Example of effect of 2,6-DAT (loss of ECA due to 
adsorption of contaminant molecules on Pt sites) with CV cycles 
from 0.025 to 1.05 V at a scan rate of 20 mV/s as measured under 
the Hupd normalized by initial available surface in the clean electrode 
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Figure 6.8. Example of the change in surface coverage by benzyl alcohol and p-tert butyl 
phenol (loss of ECA due to adsorption of contaminant molecules on Pt sites) with CV 
cycles from 0.025 to 1.05 V at a scan rate of 20 mV/s as measured under the Hupd 
normalized by initial available surface in the clean electrode. 
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Figure 6.9. The ECS loss after adding organic compounds in the RDE electrolyte. 
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Figure 6.10. Recovery CV at room temperature 
after contaminating with 20 mM of DEGEE 
using partial scans from 0.75, 0.85, 0.95 and 
1.05 V at 20 mVs-1. 
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Figure 6.11. ORR polarization curves on a Pt/VC 
working electrode at different concentrations of 2-(2-
ethoxyethoxy) ethanol after pre-reducing the Pt at 0.4 V 
for 400 s. The “baseline” curve denotes uncontaminated 
polarization curve.  
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Figure 6.12. ORR polarization curves on a Pt/VC working electrode 
at different concentrations of 2-(2-ethoxyethoxy) ethanol acetate after 
pre-reducing the Pt at 0.4 V for 400 s. The “baseline” curve denotes 
uncontaminated polarization curve.  

-7

-6

-5

-4

-3

-2

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

k
 c

ur
re

nt
 d

en
si

ty
, m

A
/c

m
2

Disk potential, V

baseline
1E-3 M 
5E-3 M 
2E-2 M 
recovery



www.manaraa.com

 

214 

 

Figure 6.13. ORR polarization curves on a Pt/VC working electrode at different 
concentrations of polyethylene glycol dimethacrylates after pre-reducing the Pt at 
0.4 V for 400 s. The “baseline” curve denotes uncontaminated polarization curve.  
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Figure 6.14. ORR polarization curves on a Pt/VC working electrode at 
different concentrations of 2,6-DAT after pre-reducing the Pt at 0.4 V 
for 400 s at room temperature. The “baseline” curve denotes 
uncontaminated polarization curve. 
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Figure 6.15. ORR polarization curves on a Pt/VC working electrode at 
different concentrations of benzyl alcohol after pre-reducing the Pt at 0.4 V 
for 400 s at room temperature. The “baseline” curve denotes 
uncontaminated polarization curve.  
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Figure 6.16. ORR polarization curves on a Pt/VC working electrode at 
different concentrations of p-tert butyl alcohol after pre-reducing the 
Pt at 0.4 V for 400 s at room temperature. The “baseline” curve 
denotes uncontaminated polarization curve. 
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Appendix A. Calculation of ECA using samples data 

Principle 

The ECA was calculated by integrating the area under the Hupd region (the hashed 

area in figure ) where the protons (H+) adsorb on Pt sites (between 0.04 and 0.4 V) during 

the cathodic sweep. Hydrogen adsorbs and desorbs on Pt sites after the capacitive region, 

on the negative sweep. If the WE is scanned more negative close or beyond 0V hydrogen 

gas evolves. 

ECA=
IdE
ν

210 *LPt*Ageo
                                                   (1) 

In the hydrogen region, protons interact with the catalyst surface, adsorbing to the 

surface in the cathodic scan and desorbing in the anodic scan. In the oxygen region, 

hydroxide ions oxidize the surface in the anodic scan and are reduced from the surface in 

the cathodic scan. Between these regions is the double layer region, in which only double 

layer charging occurs. 

In the equation, ν denotes the scan rate (ECA depends on scan rate), I is the 

current integrated over potential range of E, Lpt denotes the Pt loading in µgPt/cm2
elec, 

Ageo is the geometric area of the WE with the catalyst ink coating. 

The area under the Hupd region could be calculated using the inbuilt program of 

the AfterMATH® by Pine Instruments, or the data can be imported into the excel and 
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using a macro program the area under the curve can be calculated by simple numerical 

methods like triangle rule or trapezoid rule. This area not only gives the ECA but also 

calculates the moles of available Pt on the surface of the catalyst as given by equation 4 

in appendix B. 

For our experiments the Hupd region is integrated using Excel Macro® program 

using Trapezoidal rule. The program in Macro, supplied by General Motors Fuel Cell 

Program, as follows: 

Function: Output Calculation 

Option Explicit 
Sub OutputCalcs() 
Dim macwb, macMain, macCyc, macECA 
Dim EStt!, EStp!, EStt2!, EStp2!, EStt3!, EStp3!, ScR!, hi!, lo! 
Dim sumM1!, sum0!, isumM1!, isum0!, isumP1!, avgM1!, avg0!, iavgM1!, iavg0!, 
iavgP1! 
Dim m1#, m2#, Rshort#, avg1#, avg2#, i_x_over#, i_dbl_layer# 
Dim rend&, r&, rarray&, a&, a1&, b&, b1&, lowerboundrow&, lstc&, numcycs&, cyc& 
Dim cyc1_E_array(), cyc1_i_array(), cyc1_icorr_array(), lowerbound 
Dim cntA%, cntB%, Ec%, ic% 
Dim short_E_up(), short_i_up(), short_E_down(), short_i_down() As Single 
Dim area#, E#, EM1#, i#, iM1#, subtractor_i_plus#, subtractor_i_minus#, base1#, base2#, 
height_#, ECA#, _ 
    ECA2#, area2#, area3#, ECA3#, area4#, ECA4# 
Dim sub_i_missing As Boolean 
'Background Info 
    Set macwb = Workbooks(ThisWorkbook.Name) 
    Set macMain = macwb.Sheets("Main") 
    Set macCyc = macwb.Sheets("CycleData") 
    Set macECA = macwb.Sheets("ECAData") 
    EStt = macMain.Cells(25, 2) 
    EStp = macMain.Cells(27, 2) 
    EStt2 = macMain.Cells(29, 2) 
    EStp2 = macMain.Cells(31, 2) 
    EStt3 = macMain.Cells(33, 2) 
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    EStp3 = macMain.Cells(35, 2) 
    ScR = macMain.Cells(7, 2) 
     
'determine number of cycles 
    lstc = macCyc.Cells(2, 13).End(xlToRight).Column 
    numcycs = macMain.Cells(2, 5).End(xlDown).Row - 1       '(lstc - 12) / 3 
 
'Must redim here so I can redim later to the correct (cntA & cntB) length 
ReDim short_E_up(1024), short_i_up(1024), short_E_down(1024), short_i_down(1024) 
As Single 
num_avg_pts = 3 
For cyc = 1 To numcycs 
    Ec = 7 + cyc * 3 
    ic = 8 + cyc * 3 
    rend = macCyc.Cells(2, ic).End(xlDown).Row 
ReDim cycl_E_array(rend), cyc1_i_array(rend) 
    cyc1_E_array = Range(macCyc.Cells(2, Ec), macCyc.Cells(rend, Ec)) 
    cyc1_i_array = Range(macCyc.Cells(2, ic), macCyc.Cells(rend, ic)) 
    'subtractor_i = 0 
    sub_i_missing = True 
    For r = 2 To rend - 1 
        E = cyc1_E_array(r, 1) 
        EM1 = cyc1_E_array(r - 1, 1) 
        i = cyc1_i_array(r, 1) 
        iM1 = cyc1_i_array(r - 1, 1) 
       If E <= EStp And EM1 >= EStp And i < 0 Then subtractor_i_minus = i  'And 
sub_i_missing 
        If E >= EStp And EM1 <= EStp And i > 0 Then subtractor_i_plus = i 
      
    Next r 
   '**************************Area Calculation****************************** 
'For cyc = 1 To numcycs 
    area = 0 
    area2 = 0 
    area3 = 0 
    area4 = 0 
        'cyc1_E_array = Range(macCyc.Cells(2, Ec), macCyc.Cells(rend, Ec)) 
    'cyc1_icorr_array = Range(macCyc.Cells(2, ic), macCyc.Cells(rend, ic)) 
    For r = 2 To rend - 1 
        E = cyc1_E_array(r, 1) 
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        EM1 = cyc1_E_array(r - 1, 1) 
        i = cyc1_i_array(r, 1) 
        iM1 = cyc1_i_array(r - 1, 1) 
        If i < 0 And E > EStt And E <= EStp Then 
            base1 = i - subtractor_i_minus 
            base2 = iM1 - subtractor_i_minus 
            height_ = Abs(E - EM1) 
            area = Abs(base1 + base2) / 2 * height_ + area 
        End If 
                If i > 0 And E > EStt And E <= EStp Then 
            base1 = i - subtractor_i_plus 
            base2 = iM1 - subtractor_i_plus 
            height_ = Abs(E - EM1) 
            area2 = Abs(base1 + base2) / 2 * height_ + area2 
        End If 
  
 If i > 0 And E > EStt2 And E <= EStp2 Then 
            base1 = i 
            base2 = iM1 
            height_ = Abs(E - EM1) 
            area3 = Abs(base1 + base2) / 2 * height_ + area3 
        End If 
      
        If i < 0 And E > EStt3 And E <= EStp3 Then 
            base1 = i 
            base2 = iM1 
            height_ = Abs(E - EM1) 
            area4 = Abs(base1 + base2) / 2 * height_ + area4 
        End If 
        
    Next r 
    ECA = area * 1000 '/ 210 / ScR * 1000000000 '/ AA / PtL 
    macMain.Cells(cyc + 1, 6) = ECA 
    ECA2 = area2 * 1000 '/ 210 / ScR * 1000000000 
    macMain.Cells(cyc + 1, 7) = ECA2 
    ECA3 = area3 * 1000 '/ 210 / ScR * 1000000000 
    macMain.Cells(cyc + 1, 8) = ECA3 
    ECA4 = area4 * 1000 '/ 210 / ScR * 1000000000 
    macMain.Cells(cyc + 1, 9) = ECA4 
   Next cyc 
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End Sub 

Function : cycle splitting: 
Option Explicit 
Public num_avg_pts As Integer 
Sub split_cycles() 
Dim macwb, macMain, macCyc, macECA, datawb, dataws As Variant 
Dim Ecol%, icol%, num_avg_pts%, cycle% 
Dim First_Turn, Second_Turn As Boolean 
Dim starting_potential, cycle_start_r 
Dim rend&, rstart&, rnew&, rold&, r&, r2&, r3&, rarray& 
Dim sumM1!, sum0!, sumP1!, avgM1!, avg0!, avgP1! 
Dim fname As String, cellval As String 
Dim E_array(), i_array() 
Dim cycle_E0(0 To 65535, 0 To 0), cycle_i0(0 To 65535, 0 To 0) 
Dim cycle_E(0 To 65535, 0 To 0), cycle_i(0 To 65535, 0 To 0) As Single 
Dim corrected_i() As Single 
 
    Application.ScreenUpdating = False 
    Application.Calculation = xlCalculationManual 
 fname = Cells(13, 1).Value 
    If ISLIKE(fname, "*.cor") Then 
        Workbooks.OpenText Filename:=fname _ 
        , Origin:=20127, StartRow:=1, DataType:=xlDelimited, TextQualifier:= _ 
        xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=True, Semicolon:=False, _ 
        Comma:=False, Space:=False, Other:=False, FieldInfo:=Array(Array(1, 1), _ 
        Array(2, 1), Array(3, 1)), TrailingMinusNumbers:=True 
    Else 
        Workbooks.Open Filename:=fname 
    End If 
'Background Info 
    Set macwb = Workbooks(ThisWorkbook.Name) 
    Set macMain = macwb.Sheets("Main") 
    Set macCyc = macwb.Sheets("CycleData") 
    Set macECA = macwb.Sheets("ECAData") 
    Set datawb = Workbooks(ActiveWorkbook.Name) 
    Set dataws = datawb.Sheets(ActiveSheet.Name) 
    rend = Cells(1048576, 1).End(xlUp).Row      'subtract 1 if you un-comment delete 
code on ln 20 
    'macMain.Range("Cycles").ClearContents 
    'macCyc.Range("A2:FZ65536").Clear    
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Do 
        rstart = rstart + 1 
        cellval = Cells(rstart, 1) 
    Loop Until IsNumeric(cellval)  'ISLIKE(UCase(cellval), "END COMMENT*") 
 
Ecol = 1            'the column with voltage values from the scan 
icol = 2            'the column with current values from the scan 
num_avg_pts = 3     'the number of points to average for finding cycles & peaks 
First_Turn = False 
Second_Turn = False 
 
ReDim E_array(rend - rstart), i_array(rend - rstart) 
E_array = Range(Cells(rstart, 1), Cells(rend, 1)).Value 
i_array = Range(Cells(rstart, 2), Cells(rend, 2)).Value 
worksheet 
    rnew = 0 
    cycle = 0 
    For r = 1 + num_avg_pts * 2 To rend - rstart - num_avg_pts * 2 
        sumM1 = 0 
        sum0 = 0 
        sumP1 = 0 
        For rarray = r - num_avg_pts * 2 To r 
            sumM1 = E_array(rarray, 1) + sumM1 
            sum0 = E_array(rarray + num_avg_pts, 1) + sum0 
            sumP1 = E_array(rarray + num_avg_pts * 2, 1) + sumP1 
        Next rarray 
avgM1 = sumM1 / (num_avg_pts * 2 + 1) 
        avg0 = sum0 / (num_avg_pts * 2 + 1) 
        avgP1 = sumP1 / (num_avg_pts * 2 + 1) 
        If r = 1 + num_avg_pts * 2 Then 
            starting_potential = avgM1 
            cycle_start_r = r 
        End If 
               If avgM1 > avg0 And avg0 < avgP1 Then 
            First_Turn = True 
        End If 
        If avgM1 < avg0 And avg0 > avgP1 Then 
            Second_Turn = True 
        End If 
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 If First_Turn And Second_Turn And (avg0 <= starting_potential Or r = rend - rstart - 
num_avg_pts * 2) Then 
            cycle = cycle + 1 
            macMain.Cells(cycle + 1, 5) = "Cycle " & cycle 
            For r2 = cycle_start_r To r 
                cycle_E(r2 - cycle_start_r, 0) = "=" & E_array(r2, 1) & "+Main!$B$9" 
                cycle_i(r2 - cycle_start_r, 0) = i_array(r2, 1) 
            Next r2 
            Range(macCyc.Cells(2, cycle * 3 + 7), macCyc.Cells(2 + r - cycle_start_r, cycle * 
3 + 7)) = cycle_E 
            Range(macCyc.Cells(2, cycle * 3 + 8), macCyc.Cells(2 + r - cycle_start_r, cycle * 
3 + 8)) = cycle_i 
       
            If cycle = 1 Then 
                macCyc.Cells(1, 1) = "Cycle" 
                macCyc.Cells(1, 2) = 1 
                Range(macCyc.Cells(2, 1), macCyc.Cells(2 + r - cycle_start_r, 
1)).FormulaR1C1 = "=OFFSET(RC7,0,R1C2*3)" 
                Range(macCyc.Cells(2, 2), macCyc.Cells(2 + r - cycle_start_r, 
2)).FormulaR1C1 = "=OFFSET(RC8,0,R1C2*3)" 
                Range(macCyc.Cells(2, 3), macCyc.Cells(2 + r - cycle_start_r, 
3)).FormulaR1C1 = "=OFFSET(RC9,0,R1C2*3)" 
            End If 
            cycle_start_r = r 
            First_Turn = False 
            Second_Turn = False 
            r = r + num_avg_pts * 4 
        End If 
    Next r 
        datawb.Close 
        Application.Calculation = xlCalculationAutomatic 
    Application.ScreenUpdating = True 
End sub 
 

This Macro enables to split the cycles of the CV and also integrate the area under 

the hydrogen adsorption region (0.04 to 0.4 V in the cathodic scan). This area is also 

divided by the scan rate and Pt loading to give the value of electrochemical surface area 

(ECA) or moles of Pt available. 
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Figure A.1. Area under the curve in Hupd region used to 
calculate electrochemical surface area (ECA) and moles of 
available Pt 
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Appendix B. Monolayer equivalent of leachate solution calculation 

The charge (Q) was calculated from integrating the current (I) over the potential 

range (E) diving by the scan rate (ν) under the Hupd region as shown in equation 1. 

Q=
IdE

ν
                                                                    (1) 

For all the CV experiments depicted in this dissertation the value of ν is 20 mV/s 

or 100 mV/s. 

The adsorption of hydrogen is governed by the following equation (2) 

H2 + Pt ↔ Pt-Hads + H+ + e-                                                (2) 

X + Pt → Pt-X                                                          (3) 

For each mole of electron transfer one mole of H2 adsorbs on Pt. 

The magnitude of the charge of one mole of electrons is given by 96485. For Q 

amount of charge moles of Pt can be calculated from equation 3. 

	 	 	                                                          (4) 

Assuming one C from the leachate solution adsorbs in one Pt site, the monolayers 

of C atom was calculated using equations 4 and 5. 

C-Pt = H-Pt                                                                  (5) 
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Though this assumption was not accurate for all organic species, it provided a 

manageable means of calculating an approximate surface coverage of unknown extract 

solution. A monolayer equivalent of surface coverage was assumed when enough moles 

of carbon in the leachate/extract solution was added to bond to every mole of active sites 

on the platinum surface. As shown in [4], a molar quantity of carbon was calculated by 

multiplying the desired number of monolayer equivalents of coverage by the number of 

moles of active sites as calculated in [2]. 

Mol of C = monolayers x moles of Pt                                          (6) 

The volume added in the electrolyte can be calculated by equation 6. 

Volume in ml= 
mol C mol *12

g
mol

1
g

ml
*TOC ppm *10-6

                                              (7) 

Concentration of C atoms in the leachate is given by equation 7. 

μM	
∗

                                                                   (8) 

Therefore, in 145ml of electrolyte the final concentration of C atoms from the 

leachates can be obtained from equation (8) 

µM = 
volume in ml*TOC

12*1000*(145+volume in ml)
	                                          (9) 

A sample calculation for 50 MLs of carbon coverage on Pt is presented in table 

A.1, assuming 0.02 V/s sweep rate, charge (Q) calculated to be 0.0005 C and moles of Pt 

available in uncontaminated electrode to be 5.2 x 10-9 (calculated from the area under 

hydrogen adsorption region by integrating between 0.04 to 0.4 V, see appendix A), mol. 
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wt. of carbon being 12 mol/g, TOC of a leachate 750 ppm, density of leachate solutions 

1g/cc, the equation 7 can be substituted as,  

	 	 	
50 ∗ 12	 ∗ 5.2 ∗ 10
1 ∗ 750 ∗ 10

 

Volume in ml = 0.00412 
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Table B.1. Example of calculation of leachate volume added during 
the contamination experiments based on the initial moles of available 
Pt in the catalyst 

 

MLs Charge Q, C Moles of Pt 
Volume 

added, ml 
Concentration 
of carbon, μM 

50 0.0005 5.2 x 10-9 0.00412 1.8 
500 0.0005 5.2 x 10-9 0.0412 18 

5000 0.0005 5.2 x 10-9 0.412 180 

 

  



www.manaraa.com

 

240 

 

Appendix C. Effect of purging, hold and cycle time and DI water on 

ECA 

Effect of purging before CV experiments 

The purpose of purging the electrolyte before conditioning with inert gas was to 

make the electrolyte free of dissolved oxygen. Since presence of oxygen can interfere 

with the different peaks of the CV it is desirable to make the electrolyte free from any 

dissolved oxygen. The open circuit voltage (OCV) at the beginning of the experiment 

(before purging) was measured to be around 0.85-0.9 V. The OCV after purging the fresh 

electrolyte with N2 for 15 minutes (900 s) came down to 0.45 V. The effect of purging 

was further observed after breaking in the electrode. During the break-in the OCV was 

recorded to decrease below 0.4 V. The significance of purging the fresh electrolyte with 

inert gas is evident in figure 4. The one way of detecting any dissolved oxygen inside the 

RDE cell is to measure the OCV of the cell before running cyclic voltammograms. 

The effect of hold time on CV cycles 

Prior to cyclic voltammetric scans, the potentiostatic hold experiments were 

performed for different amounts of time. The first row of table C.1 denotes the 

cumulative time of holds (total time of hold before performing the CV). For the first set 

of experiment, (CVs longer time), the working electrode was held initially for 10 minutes 

before running the first CV. It was subsequently held for another 10 minutes (total 20 

minutes), 35 minutes (total 55 minutes) before transferring the electrode to the clean 

electrolyte in the second cell for recovery. The ECA loss was 8%, 11%, and 18%, 
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respectively. To isolate the effect of potentiostatic hold from that of the CV scans, a 

number of the longer hold times were broken down into small segments of shorter hold 

times. During the first set of experiments (exp. 1), the WE was held for 20 minutes and 

the ECA loss was only 8% after first 10 minutes compared to an ECA loss of 11% after 

another 10 minutes hold ( i.e. after a total of 20 minutes hold). In another experiment 

(exp. 2) of total 20 minutes hold (without truncating the hold in two 10 minutes holds), 

the loss in ECA was 8%. This proved that the longer the hold time, the higher ECA loss 

and two 10 minutes hold had higher effects on ECA loss than one 20 minutes hold. 

Therefore, the CV cyclic had contributed to the extra loss of ECA during the exp. 1 (two 

10 minutes hold). But these experiments did not specify whether holding the WE or the 

CV scanning had more effect on the ECA loss. In a third set of shorter time hold 

experiments (exp. 3), the WE was held for 5 minutes, then for 10 minutes (total 15 

minutes hold), and finally – for another 5 minutes (total 20 minutes). Each hold was 

followed by 3 cycles of CV scans. The ECA loss was 1%, 4% and 11%, respectively. In 

this case, the final ECA loss was same as that of the after first two 10 minutes during the 

longer hold experiments. The final set of shorter hold experiments (exp. 4), were 

performed with six small 5-minutes hold segments with total holding time equal to 30 

minutes. In this case also there was a gradual decrease in ECA and finally at the end of 

30 minutes the ECA loss amounted to 20%, which was still less than the ECA loss due to 

longer holding time of total 55 minutes during the longer holds experiments. It is clear 

from the above mentioned experiments that the holding the WE at 0.4 V had more 

detrimental impact on ECA than CV scans. Also if the holds are broken into smaller 

segments, the ECA loss is higher than that of during one single hold for the same amount 
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of time, since each hold was followed by partial scans of CV and there was a loss due to 

the CV scans as well. This loss of ECA due to hold and cycling was attributed to the 

adsorbate species from the electrolyte [16] and also to the impurities from gas purging. 

Effects of DI water on CV 

Before introducing the contaminants in the electrolyte, it was important to explore 

the effects of DI water, since the assembly aids were soaked in DI water at an elevated 

temperature. Also, the process of adding the contamination can be simulated by adding 

DI water. Addition of contaminants increases the volume and therefore pH of the 

electrolyte. By adding DI water, all above mentioned effects could be studied, and 

appropriate measurements could be taken before adding the contaminants at liquid phase. 

To study the effect of DI water, the partial CVs were performed till 0.5 V after holding 

the electrode at 0.4 V for 10 minutes. This process was repeated 6 times so that the total 

time of hold was 60 minutes. The CVs recorded after 10, 20, 30, 40, 50 and 60 minutes 

are presented in figure C.2 as CVs 1 to 6. 

When no DI water was added, there was some loss in ECA due to potential hold 

and potential cycling. The DI water had some effects as well. The partial CV scans after 

adding DI water is shown in figure 5. 

The comparison of loss of ECA (in %) due to holding the electrode for 10 minutes 

and cycling 3 times at the end of hold without adding and after addition of DI water 

(1000ML, 31ml) was given in figure C.3. In the first case, the loss in ECA was 24% and 

in the second case – ECA decreased up to 32% at the end of 60 minutes, for partial scans 

at a scan rate of 20 mVs-1. 
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Effects of plastic leachates on CV 

Figure C.3 illustrates the contamination behavior of the leachant extracts from the 

two structural plastics. The control experiment with water showed some contamination. 

Therefore it is very important to subtract the loss due to addition of DI water from the 

absolute values of loss during contamination with any leachant (soaked in DI water). 

The contamination effect of the balance of plant (BOP) materials such as 

Ultramid® and Ryton® used as structural plastic in a fuel cell was recorded after 

injecting the leachant extracts in RDE cell at room temperature. The WE was held for 10 

minutes followed by partial CV scans. Figure C.3 shows the effect of the leachant 

addition on the electrochemical surface area. The effect of Ultramid® was much more 

severe than that of Ryton®. From the TOC of the Ultramid® and Ryton®,( Ultramid® 

being higher than Ryton®) it was apparent that the first leachant had more total organic 

carbon present in the leachant than that of the second leachant. Therefore the volume of 

the contaminants were adjusted to bring the final concentration of the total organic carbon 

in the electrolyte after injecting the leachants from Ultramid and Ryton will be the same 

(see equations 1 to 6 for detailed calculations). For detailed chemical analysis please refer 

to (32, 68). The source of the contamination may be from the degradation of the plastic 

pellets at higher temperature inside the DI water. The leachant obtained at the end of the 

soaking period was a mixture of organic, inorganic materials and ions. Future studies 

with the organic, inorganic and ions separately will enlighten about the exact cause of 

contamination. 

Figure C.4 shows the CVs performed from 0 to 0.75, 0.85, 0.95, 1.05 V potentials 

to observe any improvement due to cycling to higher potentials. The figure also shows 
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increase in the area under the Pt-O reduction region as well as area under the Hupd with 

cycling to higher potentials. These CVs suggest that higher potential cycling helped 

increase adsorption and desorption currents because higher potential cathodical scans 

facilitated more Pt-O and then Pt-OH adsorption and oxidation after 0.8 V till 1.05 V 

consequently promoting an increase in reversible hydrogen adsorption and Pt-OH 

reduction current (shown with arrows). 

This segmented recovery process is a proficient way to recover as it not only 

helped us determine the right potential at which recovery was most efficient, but also 

gave us insight about the process of recovery. Since the properties of the contaminant 

molecules would be unknown most of the time, any electrochemical oxidation or 

reduction process undergone by the molecules during recovery can be captured from the 

current recorded during the holds. Figure C.3 shows the effect of the holds at higher 

potential and the partial scans. The recovery of the Pt-O reduction region was 

significantly high. Recovery was observed in the Hupd region also. Figure 9 shows the 

final recovery of the ECA due to both potential holding and cycling. The lost Pt sites 

were almost completely recovered. Therefore, addition of DI in the electrolyte had fully 

reversible contamination effect. 

Conditions: CVs were scanned at 20 mVs-1 without any rotation of the electrode 

in a well purged (with N2 gas) clean electrolyte. 
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Table C.1. Summary of % loss of ECA due to holding and cycling of clean and 
conditioned working electrode in a fresh electrolyte. 

 
% loss of ECA After 5 

minutes 
After 10 
minutes 

After 15 
minutes

After 20 
minutes 

After 25 
minutes 

After 30 
minutes 

After 55 
minutes 

Exp. 1- CVs 
after longer 
time hold 

 
8 

 
11 

  
24 

Exp. 2- CVs 
(after shorter 

time hold) 
   

8 
   

Exp. 3- CVs 
(after shorter 

time hold) 
1 

 
4 11 

   

Exp. 4- CVs 
(after shorter 

time hold) 
3 6 11 13 17 20 
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Figure C.1. Open circuit potential before purging the 
electrolyte with inert gas was as high as 0.85 V due to the 
presence of dissolved O2 in the electrolyte (a). After purging 
for 15 minutes the OCV came down to 0.45 (b) and after 
conditioning (WE was subjected to potential cycling between 
0 to 1.2 V at a rate of 100 mVs-1) the OCV further reduced to 
0.3 V (c). 
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Figure C.2. Effect of DI water (left) on the partial cyclic voltammetries and baseline 
cyclic voltammetries during the control experiments, with no DI water added (right). CVs 
1 to 6 correspond to the CVs at the performed at 10 minutes intervals. 
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Figure C.3. The % loss in ECA before and after 
contaminating the electrolyte with DI water, Ultramid® 
and Ryton®. The scans were performed after 10 minutes 
intervals of holds. 
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Figure C.4. Cycling to higher potential can restore the lost ECA. 
The figure shows the effect of potential scans on several higher 
potential regions of the CV. 
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Appendix D. Calculations for ORR mass and Pt area specific activities 

Principle 

The reduction of oxygen proceeds through a four electron pathway to H2O or a 

two electron pathway to H2O2. 

O2 + 4e− + 4H+ → 2H2O (4e− transfer pathway)                           (1) 

O2 + 2e− + 2H+ → H2O2                                                                                (2) 

H2O2 + 2e− + 2H+ → 2H2O (2e− transfer pathway)                         (3) 

Although four electron is the major pathway for oxygen reaction for Pt (111) and 

Pt (100) surfaces Hupd region is <0.3 V, a substantial amount of H2O2 is generated3. Since 

carbon supported Pt catalysts typically consists of crystals with large fraction of Pt (111) 

and Pt (100), it resembles the single crystal properties. 

The dissociative mechanism and the associative mechanism are proposed for a low 

current density range and a high current density range, respectively: 

(1) Dissociative Mechanism: 

1/2O2 + *→ O*                                                             (4) 

O* + H+ + e- → OH*                                                          (5) 
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OH* + H+ + e- → H2O + *                                                    (6) 

where * denotes a site on the Pt surface. In this mechanism, no H2O2 is produced. On a Pt 

surface, O2 adsorption breaks the O-O bond and forms adsorbed atomic O, which further 

gains two electrons in the two consecutive steps, forming water. 

Since there is no adsorbed O2 on the Pt surface, H2O2 cannot be formed. This 

mechanism can be considered a detailed form of the direct 4-electron pathway. 

(2) Associative Mechanism: 

O2 + * → O2*                                                             (7) 

O2* + H+ + e- → HO2*                                                      (8) 

HO2* + H+ + e- →                                                        (9) 

O* + H+ + e- → OH*                                                    (10) 

OH* + H+ + e- → H2O + *                                               (11) 

This mechanism also does not involve H2O2. Since adsorbed O2 is present, the O-O bond 

may not be broken in the following steps, resulting in the formation of H2O2. The H2O2 

could either be further reduced to H2O or be a final product (84). 

Based on 4e- reduction of oxygen to water specific activity (was) and mass 

activity (im) were calculated. The limiting current (ilim) and the current at 0.9 V were 

recorded. 
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ilim in theory should be 5-6 mA/cm2 electrode. But it has to be corrected for 0.196 

cm2 electrode (5mm diameter, RDE) and also for the partial pressure of oxygen which in 

Denver was 83 kPa. Thus, the calculation follows equation 2. 

i lim corrected =		
	 	

	 	
 *       ………. (12) 

Correction for mass transport limitations is given by equation 3: 

Mass transport free current 

 ik 	 ∗
                                          ………. (13) 

ilim was the limiting current and i was the current at 0.9 V. 

The data was corrected for the resistance in the electrolyte. Figure 3 shows the 

LSVs for iR corrected and as well as corrected for partial pressure of O2 in Denver. 

Specific activity (was, μA/cm2
Pt) and mass activity (im, mA/mgPt) after the corrections for 

mass transport, electrolyte resistance, partial pressure of oxygen are given by equations 4 

and 5: 

is corrected = 
ik*1.3*105

loading*ECA*area of electrode
                      ………. (14) 

im corrected = 
ik*1.3*103

loading*area of electrode
…                            . (15) 

1.3 was the correction factor to account for the combined effect of low partial 

pressure of gases in Denver. 
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The electrodes were prepared with different batches of inks and the ECA and 

ORR activities of Pt/VC as shown in figure D.1. Before performing ORR, the working 

electrode was held at 0.4 for ca. 7 minutes. During the ORR experiments, a short CV scan 

was performed before and after ORR to monitor any loss in ECA due to ORR.The seven 

electrodes were prepared and ran in clean electrolytes each time at room temperature. The 

average ECA was ca. 66 m2/mgPt, average activity (Im) was ca. 240 mA/mgPt and the 

average specific activity (Is) was ca. 348 μA/cm2
Pt. 
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Figure D.1. Benchmarking the catalyst activities and ECA with seven batches 
of electrodes having inks made of catalyst TEC10V50E. 
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Appendix E. Calculations of Tafel Slope 

Principle 

 The relationship between overpotential and te current is given by Butler Volmer 

equation ( 

i=i0 exp
-αrdF E-Er

RT
-exp

αoxF E-Er

RT
                                (1) 

In the case of a large cathodic current density the current as a function of 

overpotential η can be written 

 

 

This corresponds to an early empirical equation by Tafel 

η = a +b log i 

Below (Figure 1) is a plot of η vs. log of anodic current with a = 0.5. The linear 

plot is of the Tafel equation. The slope b is 2.3RT/anF. The intercept at η = 0 gives the 

exchange current density i0. This is known as a Tafel plot. 

The Tafel slope was calculated for higher potential (0.85-0.95 V, kinetic region) 

and lower potential (0.65-0.85 V, mass transfer limited region). With the increase of 
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contaminants the Tafel Slope increases because the mass specific current (im) decreases 

therefore for the same potential the kinetic current ik increases with contamination. 

The contamination changed the Tafel slope for both cases of contamination. The 

Tafel slope for the baseline or uncontaminated polarization curve was around 68-70 

mV/decade which is as expected in 0.1 M perchloric acid. The Tafel slope was calculated 

for both high and low potential region and given in table 1.  

For lower potential region it was difficult to extract the Tafel slope, since some of 

the data points in log plots were undefined after reaching the limiting current. Therefore 

Tafel slopes extracted at higher potential is much relevant. 
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Figure E.1. Schematic showing the method of measuring Tafel slope. Due to the presence 
of double Tafel slope (94) the polarization curve was fitted in two different regions-
higher potential region (0.95 to 0.85 V, left) and lower potential region (0.65 to 0.85 V, 
right). 
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Appendix F. Ring-rotating disk electrode (RRDE) experiments 

Principle 

In a rotating disk electrode a second working electrode in the form of a ring 

around the central disk of the first working electrode is added. The two electrodes are 

separated by a non-conductive barrier and connected to the potentiostat through different 

leads. To operate such an electrode it is necessary to use a bipotentiostat or some 

potentiostat capable of controlling a four electrode system. 

Mechanism 

The RRDE takes advantage of the form of the laminar flow created during 

rotation. As the system is rotated the solution in contact with the electrode is driven to the 

side of the electrode the same as with a rotating disk electrode. As the solution flows to 

the side it crosses the ring electrode and back into the bulk of the solution. If the flow in 

the solution is laminar then the solution is brought in contact with the disk quickly 

followed by the ring in a very controlled manner. This technique allows the surface 

concentration of reactants and products to be varied in a controlled manner through 

changes in the rotation rate and hence can be used to determine the reaction orders 

through the dependence of the current on the rotation rate without the necessity of 

varying the bulk concentrations. 
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An important extension of the rotating disc technique is the ring-disc 

configuration which consists of a disc surrounded by a closely placed concentric ring 

with its surface in the sane plane and separated from the disc by a thin insulating sleeve. 

The rotating ring-disc electrode is well suited to the study of electrode reactions 

involving unstable products or intermediates. Species produced electrochemically on the 

disc are monitored electrochemically on the ring as the liquid spirals out from the disc 

across the surface of the ring. The concentration of the species in question, averaged over 

the surface of the ring, can be determined in most instances by one of the following 2 

procedures: 

1. Maintain the ring potential at a iralue such as to reverse the 2rocess leading to the 

fornation of the species of interest and measure the ring current. 

2. Construct the ring of a metal which is favorable for the completion of the overall 

electrode process yielding the intermediate in question on the disc or for the further 

oxidation or reduction of the product. Maintain the ring at a fixed potential favorable for 

such or scan through an appropriate range of potentials and measure the ring current. 

The problem of mass transport by convective diffusion to a rotating disc electrode 

has been solved by Levich (1) for the case of a perfectly smooth, horizontal disc of 

infinite radius rotating at a constant angular velocity in an infinite liquid under conditions 

of laminar flow. In practice, a disc electrode can effectively meet these requirements if 1) 

the radius is very large compared to the momentum boundary layer.thickness, 2) all other 

surfaces within or bounding the liquid are at a distance large conpared to the radius of the 

rotating surface, 3) surface irregularities on the disc are small compared to the 

momentum boundary layer thickness, 4) the rotation rate for the particular disc is below 
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the critical Reynolds number for the onset of turbulence [i.e. Re = (r2 w/v) < 105 where r 

= overall radius of the disc, w = angular rotation rate, v = kinematic viscosity]. 

O2 on disk can either directly reduce to water or form intermediate H2O2 which 

further reduce to water. Production of peroxide undesired since loss of 2 electrons. 

Formed H2O2 desorbs from disk and can be detected in the ring (at 1.2 V) where it is 

oxidized back to O2.  



www.manaraa.com

 

261 

 

Appendix G. Characterization of leachates by TOC, GCMS and ICP-

MS 

Introduction 

Leachate solutions were derived from the off the shelf plastic pellets and 

adhesives and lubricants. Leaching protocol involved soaking the assembly aid in water 

at elevated temperature for six weeks and then characterized analytically. The assembly 

aids were chosen for their variety of properties, as well as, their application as balance of 

plant [BOP] system components in PEM fuel cell systems. 

Leaching Protocol 

The leaching protocol was carried out using triply rinsed and capped 

polypropylene bottles. The assembly aids chosen are flowable and were spread out and 

allowed to cure on clean Teflon sheets, then peeled off of the sheets if possible and 

placed in the clean bottles of fresh DI water. A material surface area to volume of water 

ratio of 150mm2 / 1ml ratio was maintained for all samples. All bottles along with 

control blanks were placed in a calibrated oven at 90°C for 1 week. The exception was 

the Krytox lubricants, which were treated for 6 weeks due to their extremely low TOC 

and ICP total counts. Afterwards, the extract solutions were promptly removed and the 

solutions decanted off into clean bottles to separate the assembly aids from the leachant 

solution, to prevent and further leaching or re-adsorption. Aliquots (5ml) of the solution 

were taken at weekly intervals for pH and solution conductivity analysis. 
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Leachate characterization 

Gas chromatography mass spectrometry (GCMS), total organic carbon (TOC), pH, 

solution conductivity, ion chromatography (IC) and inductively coupled plasma optical 

emission spectroscopy (ICP-OES) were used for characterization of leachates. 

Total Organic Carbon (TOC) was determined using a GE Innovox, for levels up 

to 50,000 ppm and a TOC 900, for levels up to 50 ppm of total carbon. These systems 

employ a series of pumps and persulfate oxidation reactions to determine the total 

amount of carbon in a sample via CO2 production. Samples were prepared in a 4:1 

dilution of DI water to sample. 

Leaching 

GCMS was performed by a Thermo Scientific Trace/ISQ GCMS. 1.0 μl of liquid 

was injected into a SSL injector, volatilized and separated on a Thermo TG-5SILMS 

column with the resulting chromatogram generated by a total ion current [TIC] detector. 

The mass spectrometer was auto-calibrated to a perfluorotributylamine standard and each 

resulting peak/mass spectra underwent a NIST library spectral search of over 200,000+ 

molecules. High quality hits manually determined by the operator were reported as the 

species identified. After determination of model compounds selected for further study, 

pure standards were purchased from Sigma-Aldrich and run under the same conditions to 

verify molecular identification via comparison of retention time [RT] and mass spectrum. 

ICP-OES was performed using a Perkin Elmer Optima 5300 DV axial radial 

instrument with a segmented array charge coupled device [SCD] and a shear gas of argon. 

Samples were acidified using nitric acid and the system was calibrated for 29 different 
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ions before and after runs. The ICP total value was calculated as the sum of the twenty 

nine individual values and is reported in Figure I. 

IC was performed using a Dionex ICS-90 Ion Chromatography System with 

species separation on a Dionex Ion Pac AS14A IC column. The machine is calibrated for 

measuring six anions [F-, Cl-, Br-, NO3
-, PO4

3-, and SO4
2-]. The IC total value was 

calculated as the sum of the six measured values and is reported in Figure I. 

Solution conductivity and pH were performed on aliquots removed from the 

leachant solutions with a Thermo Scientific Orion 4 Star pH/conductivity benchtop 

conductivity meter after calibration with a multi-point buffer standard solutions. 
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Appendix H. Baselining with Cl- to study effect of anions 

Principle 

High-surface area fuel cell catalysts are often contaminated from the anions found 

in the leachates. It is well known from work on Pt single crystals, that anions can 

dramatically affect the kinetics of electrocatalytic reactions, e.g. the oxidation of small 

organic molecules or oxygen reduction. Although, the influence of specifically adsorbing 

anions on the ORR kinetics on high-surface area fuel cell catalysts is not widely 

researched. 

In this study I investigated the anion effect on the ORR on a high-surface area 

Pt/Vulcan XC 72 catalyst, established a baseline before running experiments with 

mixture of chloride and organics as described in chapter 5. 

ECA after addition of chloride 

The baseline with chloride performed after adding 0.1 M HCl to the electrolyte to 

achieve 0.2, 2 and 20 ppm of final chloride concentration. 

Volume added in electrolyte for 2 ppm = 
2 x145

1000x35.5x0.1
 

The full and partial baseline CVs before adding the contamination showed usual 

peaks for Pt (111 and 100) in perchloric acid. When the first dose of contamination was 

added, the Hupd region region is suppressed as well as the Pt-OH region. 
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The decrease in activity due to the presence of chloride in solution is 

accompanied, but not quantitatively mirrored, by an increased formation of peroxide, as 

compared to the reaction in pure perchloric acid. Obviously, Clad acts mainly as a site-

blocking species, which reduces the number of active sites for the orr to proceed. The 

double-layer region in the positive-going sweep and to a smaller extent in the negative 

sweep widens with increasing chloride concentration, caused by a strong retardation of 

oxide formation by adsorbed Cl−. The reduced oxide formation in the presence of Cl− is 

also demonstrated by the decreasing oxide reduction peak charge in the negative sweep 

(at ca. 0.8 V) with increasing chloride concentration 

From the figure H.2, the onset for the ORR shifts to higher overpotentials with 

increasing chloride concentration in the solution. The ORR proceeded almost entirely as 

a 4 e− reduction between 0.85 and ca. 0.3 V. 
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Figure H.1. Cyclic voltammograms before (black and red lines) and after 
adding different concentrations of chloride (0.2, 2 and 20 ppm) 
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Figure H.2. ORR before (black line) and after adding different 
concentrations of chloride (0.2, 2 and 20 ppm) 
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